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Deep Demonstration Tracing: Generalizable Imitator Policy Learning

Deep Demonstration Tracing: Learning Generalizable Imitator Policy
for Runtime Imitation from a Single Demonstration
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The Vision of Runtime One-Shot Imitation Learning / Learning from a
Single Demonstration

Runtime imitator policy: [1(als, t), where T € T is a unseen human demonstration.
Achieve any tasks directly “prompted” by corresponding demonstration t.
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A popular Paradigm: transformer with behavior cloning
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Figure 2: Our method uses a Transformer neural network to create task-specific representations,
given context and observation features computed with ResNet-18 (w/ added positional encoding).
The attention network is trained end-to-end with a behavior cloning loss, an inverse modelling loss,
and an optional point loss supervising the robot’s future pixel location in the image.
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Generlization Challenge of Runtime One-Shot Imitation Learning (OSIL)
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(c) Policy trained by DDT.

Trained by DDT Trained by traditional OSIL

* Unseen demonstrations in unseen envirnoments.
-> incorrect representation caused by transformer.

: ij ik % * Unforseen changes after demonstrations collection. .M
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Deep Demonstration Tracing: Generalizable Imitator Policy Learning

1. Background

2. Methodology

1. Demonstration transformer
2. OSIL via meta-RL

3. Experiment
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Keyl: Inject the induective bias of "how human make decisions in
runtime OSIL' into the imitator policy network

"~/

expert's trajectory
correct imitation trajectory

“ temporarily parked truck
(inexistent when demonstration)

Ostate; =p> action; () target

7
An example of 3-stage OSIL of humans.

4

*  Stage 1: Identify relevant states within the trajectory
based on the current state.

«  Stage 2: Analyze the expert's behavior patterns
associated with these states.

«  Stage 3: Trace the expert's demonstrations based on
the relationship between the current state and the
expert's behavior patterns in the demonstrations.
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Key2: Solve runtime one-shot imitation learning by context-based
meta-RL, instead of supervised learning

set simulator
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e demos

demo T,
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train with context-based
meta-RL to achieve the task
reward defined in w;

One-shot
imitator Il(als, 7)

(a) train: learn a general model to imitate in all tasks
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Wtest J lmltatOT [l(als, )

(b) deploy: adapt to the target task presented by a demo

(2) deploy without
further fine-tuning

(1) collect a
expert demo

Illustration of the Training and Deploying Workflow for a Runtime One-shot imitator policy via context-based meta-RL.

* The unforeseen changes will randomly apprear in the simulators (M).
* With meta-RL, the imitator policy will try to achieve all of the targets the same to the demonstration

guided by 0-1 task rewards.

* In the process, the imitator policy will suffer from the unforseen changes and have to handle them

before achieve the targets.

NANJING UNIVERSITY

LAVIDA

Learning,And Mining, from DatA




Deep Demonstration Tracing: Generalizable Imitator Policy Learning

1. Background
2. Methodology

3. Experiment
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Research questions

1. RQ1: The one-shot imitation ability of DDT in unseen situations, including unseen demonstrations,
unseen environments, and unforeseen changes after demonstration collection.

2. RQ2: Does demonstration transformer really imitating via tracing the demonstration?

3. RQ3: Can DDT have potential of performance improvement when scaling up the size of parameters and
demonstration data, inspired by the "Scaling Law'" in large language models.
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Experiment: Valet Parking Assist in Maze
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(A) Valet Parking Assist in Maze (VPAM) (B) Meta-World (C) Complex Planning Tasks of Robot Manipulation

Illustration of Major Experiments in this paper. (A) Illustration of the VPAM, which is a new benchmark for OSIL with unforseen
changes. The imitation points are provided by our DDT method. (B) Illustration of tasks in Meta-Wolrd. (C) Various Complex
tasks of robot manipulation in clutter environments. (a): Grasp the blocked target object (cyan). (b): Stack the objects. (c): Collect
the objects scattered over the desk together to the specified area (yellow).
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RQ1l: One-Shot Imitation Ability in Unseen Situations
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RQ1l: One-Shot Imitation Ability in Unseen Situations

door open button press button press button press

P

topdown topdown wall button press  door close reach
» Table 4: Performance on unseen heterogeneous demonstra-
tions.
Runtime Environment | Button Press Door Close Reach
Imitation
faucet close window open window close Performance | 0.78 1.00 0.75
Training tasks (reach 100% success rate) Test tasks

We test and record the generalization performance on three types of unseen heterogeneous demonstrations with all positions
of goals without fine-tuning.
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RQ2: Demonstration-Attention Mechanism for Demonstration Tracing in DDT
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(b) Attention score.

Demonstration states weighted by attention scores:
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RQ3: Similar Scaling Law of DDT when Scaling Up in the OSIL Setting
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Asymptotic performance of DDT under varying demonstration quantities and model parameters, with each unit on the x-axis
representing 60 demonstrations or 0.6 million parameters. The x-axis is on a logarithmic scale. Square markers depict the
performance of the default DDT parameters.
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Policy-conditioned Model: Generalizable Environment Model Learning

Policy-conditioned Environment Models are More Generalizable
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Policy-conditioned Model: Generalizable Environment Model Learning

1. Background
2. Motivation of our Solution
3. Experiment

4. Take-home Messages
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Offline Environment Model Learning

Standard Offline Environment model Learning Objective

T = argminy Eg ;5 5.p[—log T(s'|s, a)]

The root purpose of environment model learning: Unseen
Policy Evluation.
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Policy evaluation surpasses the SL's capability as it violates the independent and identically distributed

i.i.d. assumption
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Policy-conditioned Model: Generalizable Environment Model Learning

1. Background
1. Solution
2. Experiment

3. Take-home Messages
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Motivation

(a) development pipeline for PAM

train and evaluate
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Figure 1: An illustration of the difference between the policy-agnostic model (left) and the policy-conditioned model (right).
Suppose we wish to learn an environment where a biped robot is asked to move forward from an offline dataset including
different locomotion patterns, such as jumping, walking, running, etc. Different locomotion patterns usually correspond to
quite different transition patterns even though they can be regarded as a single task.

From the perpective of model usage, it is actually a multi-task problem.
-> Why can’t we solved it by meta-learning?
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Solution

Policy representation reqularization LSTM/transformer encoder
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(b) development pipeline for PCM
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policy-conditioned dynamics model

What is the benefits?
Theoretical analysis: The aaptation to policies reduces the PCMs’ generalization error compared with standard
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Policy-conditioned Model: Generalizable Environment Model Learning

1. Background
1. Solution
2. Experiment

3. Take-home Messages
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Expeirment: Proof-of-Concept Verification
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Expeirment: Policy evaluation / selection

Table 1: Performance gain of offline policy selection for MOPO (Yu et al., 2020) by different methods.

Task Name | Last Epoch FQE IS DICE PAM PCM (Ours)
halfcheetah-medium-replay 39.3% 23.0% 87.8% 1.6% 1.6% 98.4%
hopper-medium-replay 56.0% 341% 56.0% 198% 47.3% 64.8 %
walker2d-medium-replay -4.6% 46% 343% 13.0% -30.6% 51.9%
Average | 30.2% 206% 594% 393% 11.5% 71.7%
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Figure 4: The performance of OPE in three metrics. To aggregate across tasks, we normalize the real policy values and
evaluate policy values to range between 0 and 1. The error bars denote the standard errors among the tasks with three seeds.
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Expeirment: MPC
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Figure 5: Left shows cumulative rewards within an episode 5
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in HalfCheetah. Right shows regrets of PAM and PCM dur-
ing CEM’ obtained by tr aCking several planning processes. -60 -40 -20 0 20 40

o o
<} N}

(b) without representation loss

Figure 6: Visualization for policy representations of differ-
ent policies learned by PCM in HalfCheetah. Points are
colored according to the normalized value.
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Policy-conditioned Model: Generalizable Environment Model Learning

1. Background
2. Solution
3. Experiment

4. Take-home Messages

NANJING UNIVERSITY Learning And/Mining from DatA




Take-home Messages

1. T4~ “META Learning by Context” [1, 2, 3]

2. TRT KA RAE, BEmziie ), RMREBGTHRS:
1. TransformeriZiE T £, HE&FH = Al aBEA Y > 2iFayzLhe
2. Supervised LearningiZdf 2 £-> &WLF 3] with HAHNLE%E —> £4F
ayizAhe 7 [4]
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[3] Policy Rehearsing: Training Generalizable Policies for Reinforcement Learning. 2024 ICLR.

[4] Adversarial Counterfactual Environment Model Learning. 2023 NeurlPS
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