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Challenges of Model-based Offline RL
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Challenges of Model-based Offline RL
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Offline Model-based RL via Conservatism

[n-support region
——p  Learned policies

Conservative policy

Large penalty [1] or
constraints [2]

The regions might have
extrapolation error

/ Out-of-support regions Conservatism guarantees the lower-bound

performance of the learned policy, but also
T limits the upper-bound performance.
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Our Research Question

In-support region
——p [earned policies

Out-of-support regions Out-of-support regions

Can we the handle the decision-making problem in out-of-
1 Im support regions directly?
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Any other potential way to solve the model-based offline RL problem?

F

Out-of-support regions
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Any other potential way to solve the model-based offline RL problem?

F

Out-of-support regions

If we can construct a dynamics model set with as many as possible dynamics transitions in
out-of-support regions and learn fo adapt each of them via an adaptable meta policy,

then we can make reasonable decisions in out-of-support regions via adapting the meta
policy in the real world.
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Any other potential way to solve the model-based offline RL problem?

F

Out-of-support regions

If we can construct a dynamics model set with as many as possible dynamics transitions in
out-of-support regions and learn fo adapt each of them via an adaptable meta policy,

then we can make reasonable decisions in out-of-support regions via adapting the meta
policy in the real world.

mm -> MAPLE: Offline Model-based Adaptable Policy Learning
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Dynamics models + Meta policy

1. construct a dynamics model set with as many as possible dynamics transitions in out-of-
support regions.

Construct as many as possible dynamics models p(s’|s,a) to
imitate the transitions in the dataset D -> T = {p(s'|s,a)}

2. learn to adapt each of them via an adaptable meta policy

¢*,my. = arg max Epn [Jp(Te)]

An environment-parameter extractor  z; = ¢(S¢, Ar—1,Z¢—1)

An adaptable policy a, ~ my(als) = n(als, d(se, ar—1,2t-1))
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Dynamics models + Meta policy

1. construct a dynamics model set with as many as possible dynamics transitions in out-of-
support regions

Construct as many as possible dynamics models p(s’|s,a) to
imitate the transitions in the dataset D -> T = {p(s'|s,a)}

2. learn fo adapt each of them via an adaptable meta policy

¢*,my. = arg max Epn [Jp(Te)]

An environment-parameter extractor  z; = ¢(S¢, Ar—1,Z¢—1)
An adaptable policy ag ~ ﬂ¢(a|s) = n(als, ¢(s¢, ar—1,2¢-1))

Constraints* 1. K-branch rollout
2. Reward penalty U(s,a,s")

* In practice, it is impractical to recover all possible transitions for robust adaptable policy training in all
- out-of-support regions. Therefore, similar reward penalty and truncated trajectory rollout as MOPO [1]
: i] ﬂ!'\ ég (one SOTA algorithm to learn a conservative policy) are adopted but the coefficients are more relaxed.

NANJING UNIVERSITY [1] Yy, Tianhe, et al. "Mopo: Model-based offline policy optimization." arXiv preprint arXiv:2005.13239 (2020).
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Dynamics models + Meta policy -> ability to go to out-of-support
regions for offline RL

Phases

Interactions

policy set
(embedded via z)

Deployment env

f>

Case 1 --=>

—

>

probe reduce .
Repeat until
take an action which might Update the representation of z is converged
reach out-of-support regions context until z is converged: and then meta-
via the representation of z. policy is reduced
a; = 1(Sy, z;) Ziz1 = O(Siy1, A4, Z;) to a single policy

e B
-> 8§ -- --ai -> -> Si+l

case K
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Comparative Evaluation

D4RL (Fu et al. 2020)
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Table 1: Results on MuJoCo tasks. Each number is the normalized score proposed by Fu et al. [30]
of the policy at the last iteration of training, + standard deviation. Among the offline RL methods,
we bold the highest mean for each task.

Environment | Dataset |  MAPLE | MOPO | MOPO-loose | SAC | BEAR | BC | BRAC-v | CQL
Walker2d random 217 £ 03 13.6L26 8.0+54 | 4.1 6.7 9.8 0.5 7.0
Walker2d medium 563+10.6 | 11.8+£19.3 ] 326+180 | 09 332 6.6 813 | 792
Walker2d mixed 767+ 38 | 39.0+9.6 .7:£22 | 39 253 | 113 04 | 26.7
Walker2d med-expert | 73.8 +8.0 | 446+ 129 66.7+ 148 | -0.1 26.0 6.4 66.6 | 111.0
HalfCheetah | random 384+13 | 354+£15 30.4:2]1 | 305 255 ¥ | 28.1 | 354
HalfCheetah | medium 504+19 | 423+1.6 40+16 | 43 38.6 | 36.1 455 | 444
HalfCheetah | mixed 590+06 | 53.1+20] 369+150 | -24 36.2 | 384 459 | 46.2
HalfCheetah | med-expert | 63.5 + 6.5 | 63.3 + 38.0 150+60 | 1.8 51.7 | 358 453 | 624
Hopper random [0.6 £ 0.1 [T.7£04 106106 | 113 95 1.6 120 | 108
Hopper medium 21112 | 280124 169+24 | 038 476 | 29.0 323 | 58.0
Hopper mixed 87.5 +10.8 | 67.5 £24.7 83.1 £6.5 1.9 108 | 11.8 09 | 48.6
Hopper med-expert | 425 +t4.1 | 23.7+6.0 231818 1.6 40 | 111.9 08 | 98.7

MAPLE reaches the best performance among the SOTA model-based
conservative policy learning algorithms in 10 out of the 12 tasks.
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The ability of decision-making in out-of-support regions
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Figure 3: The learning curves of MAPLE with different hyper-parameters m and H. The solid curves w0 s o s
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Pollcy vida expandl ng ‘I'he explora‘l'lon boundary, return of the best setting and the loosest setting. The x-axis is the model size m. For each m, the

legend “best” is the setting that has the largest performance, among which model size is m. The
legend “loosest” is the setting that H = 40. In the second row, we compare the best constraint
setting for each model size m. For each m, the legend “H*” is the setting that H value of the

I n u best-performance setting among which model size is m.
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Table 2: Results on MuJoCo tasks with MAPLE-200.

Environment | Dataset MAPLE-200 MAPLE
Walker2d random 221101 | 21,7403
Walker2d medium 81.3+0.1 | 56.3+10.6
Walker2d mixed 754+09 | 76.7 3.8
Walker2d med-expert | 107.0 0.8 | 73.8 £ 8.0
HalfCheetah | random 415 +3.6 | 384+13
HalfCheetah | medium 485+14 | 504 +1.9
HalfCheetah | mixed 695 +0.2 | 59.0+£0.6
HalfCheetah | med-expert 5544+£32 | 63.5+6.5
Hopper random 10.7 £ 0.2 10.6 = 0.1
Hopper medium 4.1 +26 | 21.1+12
Hopper mixed 85.0+ 1.0 | 87.5 £ 10.8
Hopper med-expert 953+73 | 425+4.1

LAVIDA

Learning And Mining,from, DatA

2 NANJING UNIVERSITY

MAPLE-200: MAPLE with large size (i.e., 200) of dynamics model set

In all of the tasks, MAPLE-200 reaches at least
similar performance to MAPLE. In the tasks like
Walker2d-med-expert, HalfCheetah-mixed, Hopper-
medium, and Hopper-med-expert, the performance
improvement of MAPLE-200 is significant.



Take-home Message

KEY point:

Dynamics models + Meta policy give the ability for offline RL fo go fo out-of-support regions.

Future work:

1. Generalization ability of the environment-context extractor with limited dynamics model.
2. Efficient/diverse dynamics model set generation process.
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