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Sim2Real Transfer for Reinforcement Learning
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1. Targge’r: We would like to train an agent to maximize the rewards in the real world.
2. Query online samples in the real world are costly.

3. We have a simulafor that is used fo simulate the real world.

4. But the simulator has reality gaps to the real world.
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Sim2Real Transfer for Reinforcement Learning

Derived Setting:
1. Target: We would like fo train an agent to maximize the rewards in the real world.
2. Query online samples in the real world are costly.
1. Different attitudes to “costly”.
1. Allow a few online samples (e.g., several steps or one episode) before
deployment.
2. Allow zero extra querying before deployment.
2. Other sources of data?
1. We have an offline dataset (collected by a human/rule-based policy).
2. We have no extra real-world dataset.
3. We have a simulator that is used fo simulate the real world.
1. What is the ability of the simulator?
1. Configurable (e.g., generate dynamics models with different friction coefficients)?
2. Renderable (e.g., state -> image)?
4. But the simulator has reality gaps to the real world.
1. The source of the gaps.
1. Observations
2. Dynamics models
3. Reward function (e.g., different tasks)
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Domain Randomization for Sim2Real RL

Derived Setting:
1. Target: We would like fo ftrain an agent to maximize the rewards in the real world.
2. Query online samples in the real world are costly.
1. [-] Different attitudes to “costly”.
1. Allow a few online samples (e.g., several steps or one episode) before deployment.
2. Allow zero extra querying before deployment.
2. [-] Other sources of data?
1. We have an offline dataset (collected by a human/rule-based policy).
2. We have no extra real-world dataset.
3. We have a simulator that is used to simulate the real world.
1. What is the ability of the simulator?
1. [+] Configurable (e.g., generate dynamics models with different friction coefficients)?
2. [-] Renderable (e.g., state -> image)?
4. But the simulator has reality gaps to the real world.
1. [J] The source of the gaps.
1. Observations
2. Dynamics models
3. Reward function (e.g., different tasks)
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Domain Randomization for Sim2Real RL
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Domain Randomization for Sim2Real RL
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Domain Randomization for Sim2Real RL
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Domain Randomization for Sim2Real RL

Reality gap
Simulator -~-----------------------——————————————> Real world
N
Config different simulators Observation N
: _ costly
in the parameter space |« Dynamics models
with reality-gap Rewards

Simulator set

Maximize reward in
the simulator set

Universal policy
Or
Meta policy

Deploy the policy

> NANJING UNIVERSITY

LAVIDA

Learning And/Mining from DatA



Domain Randomization for Sim2Real RL

Reality gap
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implicit assumption: the environment parameters of the simulators cover the one in the
e ij G ,L\ % real world. LAlm
e ; -> the meta-policy or universal policy would make reasonable decisions in the real world cami, ;
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CADZ2RL: Real single-image flight without a single real image

Indoor navigation and collision avoidance
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CADZ2RL: Real single-image flight without a single real image

Learning Architecture

- Policy representation: m(al|l) —» v

-> velocity command
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CADZ2RL: Real single-image flight without a single real image

Learning Architecture

- Policy Learning: n(all)
- Q(IIIIG)

. . In order to initialize our model with a reasonable starting
- Pretrain -> free space detection

policy, we use a heuristic pre-training phase based on free
space detection. In this pretraining phase, the model is trained
to predict P(l|I;,a;), where | € {0,1} is a label that
indicates whether a collision detection raycast in the direction
v; corresponding to a; intersects an obstacle. The raycast has
a fixed length of 1 meter. This is essentially equivalent to
thresholding the depth map by one meter. This initialization
phase roughly corresponds to the assumption that the vehicle
will maintain a predefined constant velocity v; . The model,
which is represented by a fully convolutional neural network
as described in Section is trained to label each bin
with the collision label /, analogously to recent work in image
segmentation [9]. The labels are obtained from our simulation
engine, as described in Section [[V]
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CADZ2RL: Real single-image flight without a single real image

Learning Architecture

- Policy Learning: n(all)
- Q(lL,a)
- Pretrain -> free space detection
- w(l) =argmax Q(l,a)
- RL: update Q via MC rollout follow m

Training entirely in simulation
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CADZ2RL: Real single-image flight without a single real image

Learning Architecture

- Policy Learning: n(all)
- Q(llIla)

- Pretrain -> free space detection H-branch : H = 5 , .
- 7(l) = arg max Q(I, a) Random reset: random location and with random

- RL: update Q via MC rollout follow orientation and generate a rollout of size

Training entirely in simulation

Collision
» with wall

e
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Environment with Furniture

feedback
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CADZ2RL: Real single-image flight without a single real image

Domain Randomization

1. furnitures: We use furnitures with various type and size to populate the hallways.

2. textures : The walls are textured with randomly chosen textures(e.g. wood, metal,
textile, carpet, stone, glass, etfc.), and illuminated with lights that are placed and oriented
at random.

3. viewpoints : In order fo provide a diversity of viewpoints, we render pretraining images
by flying a simulated camera with randomized height and random camera orientation.
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CADZ2RL: Real single-image flight without a single real image

Domain Randomization

1. furnitures: We use furnitures with various type and size to populate the hallways.

2. textures : The walls are textured with randomly chosen textures(e.g. wood, metal,
textile, carpet, stone, glass, etfc.), and illuminated with lights that are placed and oriented
at random.

3. viewpoints : In order fo provide a diversity of viewpoints, we render pretraining images
by flying a simulated camera with randomized height and random camera orientation.

4. tasks: represent a variety of structures that can be seen in real hallways, such as long
straight or circular segments with multiple junction connectivity, as well as side rooms with

i ————
= éd@@%@:

. Fig. 4. Floor plans of the synthetic hallways. The last three hallways are
. é’] “ j’\ % used for evaluation while the first 9 are used during training. LM

o
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CADZ2RL: Real single-image flight without a single real image

Experiment
- Realistic Environment Evaluation

1.0 T
Straight
= L-R-S
v 0.8 FS-pred |
g — CAD’RL CADZ2RL is able to maintain a collision-free flight of
2 . 1.2 kilometers in about 40% of the cases, and
£ substantially out- performs the model that is simply
S ol | trained with supervised learning to predict 1 meter of
< — free space in front of the vehicle (FS-pred) and SOTA
S 0s algorithm LRS (a supervised learning algorithm).
0 2(I)0 400 660 860 10100 1200

Flight distance (meter)

Fig. 5. Quantitative results on a realistically textured hallway. Our approach,
CADZ2RL, outperforms the prior method (L-R-S) and other baselines.
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CADZ2RL: Real single-image flight without a single real image

Experiment
- Real World Flight Experiments

We ran experiments in two different
buildings, Cory Hall and SDH (Sutardja Dai
Hall), both located on the UC Berkeley

campus.

CADZRL experienced fewer collisions and
has longer expected safe flight. This
suggests that the CAD2RL policy makes

Fewer m|s.|-akes and ls more rObUSf 1-0 Fig. 7. Snapshots(g)f autonomous flight ir(lb)various real indoor SCéCI)laIiOS. Frames ordered(df)rom top to bottom. R:i) dots show the comm(;)nded flight direction

H H by CAD?RL. (a) Flying near furniture, around corners, through a window; (b) Flying up a staircase; (c) Navigating in narrow corridors; (d) Navigating through
P er.l-urb Cl'l' | OnS an d d I'"IH'. junctions, fly through rooms; (e) Flying through a maze of random obstacles in a confined space; (f) Avoiding dynamic obstacles.

TABLE I
REAL WORLD FLIGHT RESULTS.

Environment Traveled Distance  Travel Time | Collision Collision Safe Flight  Safe Flight Total

(meters) (minutes) (per meter) (per minute) (meters) (minutes)  Collisions
Cory FS-pred 162.458 12.01 0.080 1.081 12.496 0.924 13
Cory CAD?RL 163.779 11.950 0.0366 0.502 27.296 1.991 6
SDH FS-pred 53.492 4.016 0.130 1.742 7.641 0.573 7
SDH CAD?RL 54.813 4.183 0.072 0.956 13.703 1.045 4

Learning,AndMiningfrom DatA



Sim-fo-Real Transfer of Robotic Control with Dynamics Randomization

Task: Robotic Control

Fig. 1. A recurrent neural network policy trained for a pushing task in

simulation is deployed directly on a Fetch Robotics arm. The red marker Fig. 2. Our experiments are conducted on a 7-DOF Fetch Robotics arm.
e ) Left: Real robot. Right: Simulated MuJoCo model.
indicates the target location for the puck.

1. Action: 7-DOF Fetch Robotics arm

2. Task: The goal for each episode specifies a random farget position on the table that the puck

should be moved to. The reward is binary with r = 0 if the puck is within a given distance of the
target, and r = —1 otherwise.

3. State: The state is represented using the joint positions and velocities of the arm, the position of
the gripper, as well as the puck’s position, orientation, linear and angular velocities.

-
£ P A ) = =
Q ¢
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Sim-fo-Real Transfer of Robotic Control with Dynamics Randomization

Realty gap in dynamics-parameter space

Joint 0

0.10 A

0.05 A

/
0.00 A

—— target
——— pose (sim)
—— pose (real)

Pose (Radians)

—0.05 A

0 20 40 60 80 100
Timestep

Joint 3

Joint 6

0.05 A

0.00

—0.05 A

—0.10 A

0 2'0 4I0 Gb Bb 100
Fig. 5. Joint trajectories recorded from the simulated and real robot when

executing the same target trajectories. The joints correspond to the shoulder,
elbow, and wrist of the Fetch arm.
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Given the same target trajectory, the pose
trajectories of the simulated and real
robot differ significantly, with varying
degrees of mismatch across joints.
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Sim-fo-Real Transfer of Robotic Control with Dynamics Randomization

Dynamics Randomization

During training, rollouts are organized into episodes of a
fixed length. At the start of each episode, a random set of

_ > Parameter Range
dynamics par ametejrs p are sampled according to p,, and h?ld Link Mass [0.25, 4] x default mass of each link
fixed for the duration of the episode. The parameters which Joint Damping [0.2,20] x default damping of each joint
we randomize include: Puck Mass [0.1,0.4]kg
e Mass of each link in the robot’s body Puck Friction [0.1,5]
« Damping of each joint Puck Darppmg [0.01,0.2]Ns/m
e Mass, friction, and damping of the puck Table Height - [0.73,0.77]m .
. Controller Gains [0.5, 2] x default gains
o Height of the table . . —
, .. Action Timestep A [125,1000]s
e Gains for the position controller
o Timestep between actions TABLE I
o Observation noise DYNAMICS PARAMETERS AND THEIR RESPECTIVE RANGES.

which results in a total of 95 randomized parame [he

NANJING UNIVERSITY Learning,And Mining, from DatA




Sim-fo-Real Transfer of Robotic Control with Dynamics Randomization

Adaptive Policy Training

128 128 128 128
9—0
. \5 O—0O— @0 &
The objective is then modified to maximize the expected . :>@::>@0

E Z (8¢, 01)

RNN: Learn to

represent the

.. . e : g
By training policies to adapt to variability in the dynamics - — ,
of the environment, the resulting policy might then better . / \>Q O— 0l environment

return across a distribution of dynamics models p,,, @
T_1 Layer # 1 2 3 4
128 128 128 128
[]ETNP(Tlvr,u) [ ”

generalize to the dynamics of real world. il — e e
Ar—1 % @
Layer # 1 2 3 4 5

Fig. 4. Schematic illustrations of the policy network (top), and value
network (bottom). Features that are relevant for inferring the dynamics of
the environment are processed by the recurrent branch, while the other inputs
are processed by the feedforward branch.
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Sim-fo-Real Transfer of Robotic Control with Dynamics Randomization

Experiments
10 Pushing
- 1.0
0.8 -
0.8 -
w 0.6
g ﬁ 0.6 -
v
o
@ 0.4 - o
0.4 -
— LSTM n
0.2 il
. —— FF no Rand 0.2 4 W Sim
. —— FF + Hist mm Real
"0 1000 2000 3000 4000 5000 6000 7000 8000 0.0 -

. LSTM FF no Rand FF FF + Hist
Optimizer Steps

Fig. 6. Learning curves of different network architectures. Four policies Fig. 7. Performance of different models when deployed on the simulated

are trained for each architecture with different random seeds. Performance and real robot for the pushing task. Policies are trained using only data from
is evaluated over 100 episodes in simulation with random dynamics. simulation.
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A Solid Application: Solving Rubik's Cube with a Robot Hand
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Domain Adaptation for Sim2Real RL

Derived Setting:
1. Target: We would like fo ftrain an agent to maximize the rewards in the real world.
2. Query online samples in the real world are costly.
1. [-] Different attitudes to “costly”.
1. Allow a few online samples (e.g., several steps or one episode) before deployment.
2. Allow zero extra querying before deployment.
2. Other sources of data?
1. [+] We have an offline dataset (collected by a human/rule-based policy).
2. [x] We have no extra real-world dataset.
3. We have a simulator that is used to simulate the real world.
1. [-] What is the ability of the simulator?
1. Configurable (e.g., generate dynamics models with different friction coefficients)?
2. Renderable (e.g., state -> image)?
4. But the simulator has reality gaps to the real world.
1. [-] The source of the gaps.
1. Observations
2. Dynamics models
3. Reward function (e.g., different tasks)
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Domain Adaptation for Sim2Real RL
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Domain Adaptation for Sim2Real RL
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Domain Adaptation for Sim2Real RL
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k./
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Domain Adaptation for Sim2Real RL

_- costly
Reality gap Z//
Simulator -~-----------------------——————————————> Real world
Observation
< Dynamics models
: Rewards
train
< Offline Dataset
v Use the adapter to fill up the gap based on the policy behavior
Adapter -- - - - - - ——————————————— ———— — — — >
I
| Use the adapter to fill up
\!/ the gap of the simulator
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The adapter can be designed in many different ways:
n(a|Adapt(os|o,)), m(als) + Adapt(als)
. T(s'|s,a) + Adapt(s'|s, a)
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Domain Adaptation for Sim2Real RL

_- costly
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The adapter can be designed in many different ways:
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Virtual to Real Reinforcement Learning for Autonomous Driving

Observation gap in autonomous driving

] K
»
-
»
|

Figure 4. Examples of Virtual to Real Image Translation. Odd columns are virtual images
captured from TORCS. Even columns are synthetic real world images corresponding to vir-
tual images on the left.
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Virtual to Real Reinforcement Learning for Autonomous Driving

— — N o AN
- /m Y
Virtual Image Virtual Parsing

Synthesized Real

Discriminator Discriminator
Raw Virtual Stat Reward
aw Virtual State e —— A Synthesized Realistic State
nvironment — gent —==&
Action

Figure 1: Framework for virtual to real reinforcement learning for autonomous driving. Vir-
tual images rendered by a simulator (environment) are first segmented to scene parsing repre-
sentation and then translated to synthetic realistic images by the proposed image translation
network (VISRI). Agent observes synthetic realistic images and takes actions. Environment
will give reward to the agent. Since the agent is trained using realistic images that are visually
similar to real world scenes, it can nicely adapt to real world driving.

‘CCGAN(G7 D) :Ex,vapdam (x,5) [logD(x7 S)]

(1)
a5 ]Exrvpdam (x),2~pz(2) [IOg(l - D(xa G(xa Z)))]a

L1 (G) = Ex,s~pdam(x,s),z~pz(2) [”S - G(x’ Z) ” 1]' (2

Therefore, the overall objective for the image-to-image translation network is,

€Y ﬁ ﬁ j"\ ,% G* = argngnmgxﬁcGAN(G,D) +AL11(G), 3) m
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Virtual to Real Reinforcement Learning for Autonomous Driving

600 —— Randomization Method
— Oracle
500 —— Our Method

400

300

Reward

200

100 A l ‘ ‘L
A il MR Bria b ‘,MW“‘)NN R

-100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Steps 1e7

Figure 5: Transfer learning between different environments. Oracle was trained in Cgtrack2
and tested in Cgtrack2, so its performance is the best. Our model works better than the
domain randomization RL method. Domain randomization method requires training in mul-
tiple virtual environments, which imposes significant manual engineering work.

Table 1: Action prediction accuracy for the three methods.
Accuracy Ours B-RL SV

Datasetin [H] 43.40% 28.33% 53.60%

-
£ P A ) = =
Q ¢
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Sim-to-Real Transfer with Neural-Augmented Robot Simulation

Dynamics gap in robotics

Figure 1: Impact of backlash: when setting both the simulated robot (red) and the real robot (white)
to the resting position, the small backlash of each joint adds up to a noticeable difference in the end
effector position.
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Sim-to-Real Transfer with Neural-Augmented Robot Simulation

Neural-Augmented Robot Simulation

SS S

1+1 i |+1

SS
action action action action
M @@ @ v @U@ @=-

copy/ copy/
copy/ | / copy/ set ' / set
set set

REAL O action acton . REAL O O

S ;

i+1 |+1

(a) Training phase (b) Pohcy Learning Phase

Figure 2: Left: Overview of the method for training the forward dynamics model. By gathering
state differences when running the same action in simulation and on the real robot. Right: When the
forward model is learned, it can be applied to simulator states to get the corresponding real state.
This correction model (A) is time-dependent (implemented as LSTM). The policy learning algorithm
only has access to the "real" states.

After collecting the data the model ¢, an LSTM [7], is trained to predict s} ;. The difference between

two states is usually small, so the network outputs a correction term ¢(st, a;, h, 5, 1) = st —s5,4
where h is the hidden state of the network. We also compare our approach with a forward model
trained without using information from the source domain, 1 (s;, a;, h) = sk, ; — s;. We normalize

ﬁ g j" % the inputs and outputs, and the model is trained with maximum likelihood using Adam [30]. |
N )
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Sim-to-Real Transfer with Neural-Augmented Robot Simulation

“f'/ .
. P . .

(a) Pusher (b) Striker (c) ErgoReacher

Experiment:
- MuJoCo

Figure 3: Benchmark simulation environments used

V’«l» S . .
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Sim-to-Real Transfer with Neural-Augmented Robot Simulation

70 —— et
- 0.25 .
80 -150
0.00
. -90
e e . e — —200 * -0.25
° —100
—_— 50
-110 _250
= MUJOCO 120 -0.75
-130 -300 ? 1.00
140 125
Xpel ource Forward Model T Expert  Source Forward Model Transfer Expert Source Forward Model Transfer
Policy Policy Policy Policy Policy Policy Policy Policy Policy Policy Policy Policy
(a) Pusher (b) Striker (c) ErgoReacher

Figure 5: Comparison of the different methods described when deployed on the target environment,
for the Pusher (5a) and the Striker (5b).

mi -;_T:i@

Expert 50 100 250 500 1k 2K 10k 50k

Figure 6: We compare the results of our method when the number of trajectories used to train the
model ¢ varies on the Pusher

Expert policy: policy trained directly in the target environment

Source policy: transferring a policy trained in source environment without any adaption

Forward model policy: a forward dynamic model 1) is trained using an LSTM and data
collected from the target domain then a policy trained using only this model (without insight
from the source domain)

P
; (ﬁ ;ﬁ J,\ ;% Transfer policy: the policy trained using NAS Lm
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Sim-to-Real Transfer with Neural-Augmented Robot Simulation

Experiment:
- Physical Robot

(a) Physical Robots (b) Simulation

Figure 7: The ErgoShield environment in reality and simulation. The attacker (sword, left side) has to
hit the randomly-moving defender (shield, right side) as often as possible in 10s. In the left image the
defender robot is covered in a sock to mitigate the attacker getting stuck too often. The joint angles
were compensated for backlash in the left image to highlight similarities.

whixd LaAViDA
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Sim-to-Real Transfer with Neural-Augmented Robot Simulation

Experiment:
- Physical Robot

20.0
17.5

15.0

12.5

7.5

5.0 ° é
2.5 T
Expert Source Forward Model Transfer 0 50 100 150 200 250 300
Policy Policy Policy Policy Time Step
(a) Method Comparison (Real Robot) (b) Example Single Joint Position and Estimate

over Time

Figure 8: Results of different simulation to real transfer approaches. Left: comparison of average
rewards of 20 rollouts of 3 policies per approach. Right: comparison of single joint behavior when
receiving a target position (violet dotted) in simulation (green dashed), on the real robot (blue solid),
and estimates from the forward model (red, dashed) and our method (yellow, dotted)

1. hit detection is not perfect (as in simulation) and since not every hit gets
detected the reward is sparser
> 2. since the attacker robot frequently gets their sword stuck in the opponent, in
themselves, or in the environment, exploration is not as easy as in simulation

\
\ L\ -
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Learning to Drive from Simulation without Real World Labels

Overall framework

Learn a latent space to represent
The observations in the two domains

Fig. 1: We constructed a model for end-to-end driving (vision to
action) for lane following by learning to translate between simu-
lated and real-world imagery (Xsim,req: from domains dgim reai),
jointly learning a control policy from this common latent space Z
using labels ¢ from an expert driver in simulation. This method
does not require real-world control labels (which are more difficult
to acquire), yet learns a policy predicting a control signal ¢ which
can be applied successfully to a real-world driving task.

NANJING UNIVERSITY Learning AndMining from DatA




Learning to Drive from Simulation without Real World Labels

Two directions generator

Xsix;’ Esim <_’ XSim_’ Dsim T/F
Xreal_’ Exeal Greal — Xreal_’ Dreal T/F
- ¢

Z

d {sim, real}

Fig. 2: Model architecture for domain-transfer from a simulated
domain to real-world imagery, jointly learning control and domain
translation. The encoders Esim req: map input images from their
respective domains to a latent space Z which is used for predicting
vehicle controls ¢. This common latent space is learned through
direct and cyclic losses as part of learning image-to-image trans-
lation, indicated conceptually in Figure E and in Section III-B.
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Learning to Drive from Simulation without Real World Labels

Two directions generator:

d €{sim, real}

Fig. 2: Model architecture for domain-transfer from a simulated
domain to real-world imagery, jointly learning control and domain
translation. The encoders Esim req: map input images from their
respective domains to a latent space Z which is used for predicting
vehicle controls ¢. This common latent space is learned through
direct and cyclic losses as part of learning image-to-image trans-
lation, indicated conceptually in Figure E and in Section III-B,

Image Reconstruction Loss

d €{sim, real}
Common latent space

(a) Reconstruction loss Lrecon (b) Cyclic reconstruction loss Leyc

d d <
si real sim
. 1.
Z Zd €{sim, real}
Common latent space Common latent space

d - gcunlrol cyc control dreal
i 3.

d €{sim, real}

(c) Control loss L.ontrol ) Cyclic control loss

cyc control
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Learning to Drive from Simulation without Real World Labels

Two directions generator: Image Reconstruction Loss

dsim grecon dreal recon
D. T/F
sim
D, T/F
d €{sim, real}
Common latent space
G
d €{sim, real}
Fig. 2: Model architecture for domain-transfer from a simulated P S e s S| WASTERRCRS | e Gu A w——
domain to real-world imagery, jointly learning control and domain 1) Image Reconstruction Loss: For a given domain d, Eq
translation. The encoders E'sim,req; map input images from their and G4 constitute a VAE. To improve image translation we
respective domains to a latent space Z which is used for predicting used an L1 Loss L,econ between an image X, and the re-

vehicle controls ¢. This common latent space is learned through sonstrisad hnasentErsaeans it disish the cofessonds
direct and cyclic losses as part of learning image-to-image trans- g P g & P g

lation, indicated conceptually in Figure 3 and in Section III-B, VAE, X" = Gd(Eq (X fl))’ as shown in Figure 3a
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Learning to Drive from Simulation without Real World Labels

Two directions generator: Cyclic Reconstruction Loss

i dreal

X = E. G PX = D. T/F @

sim sim sim sim sim

Xreal_’ Erea.l 6_’ Xreal_’ Drea_l T/F 74—

d €{sim, real}
Common latent space
- ¢
Z;

d €{sim, real}

¢

2) Cyclic Reconstruction Loss: Assuming a shared latent
space implies the cycle-consistency constraint, which says
that if an image is translated to the other domain and then
translated back, the original image should be recovered
[38], [15]. We applied a cyclic consistency loss L., to the

Fig. 2: Model architecture for domain-transfer from a simulated
domain to real-world imagery, jointly learning control and domain
translation. The encoders Esim req: map input images from their
respective domains to a latent space Z which is used for predicting
vehicle controls ¢. This common latent space is learned through

direct and cyclic losses as part of learning image-to-image trans- VAEs, given by an L1 loss between an image Xy and the
lation, indicated conceptually in Figure 3 and in Section III-B, image after translating to the other domain, d’, and back,

X3¢ = Gy(Ey(Ga(Eq(Xa)))), see Figure 3bl
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Learning to Drive from Simulation without Real World Labels

Two directions generator: Control Loss

z P
D T/F -
Zd €{sim, real} a
D T/F Common latent space

(c) Control loss Lcontrol (d) Cyclic control loss

d €{sim, real}
Common latent space

d €{sim, real} £cyc control

Fig. 2: Model architecture for domain-transfer from a simulated
domain to real-world imagery, jointly learning control and domain
translation. The encoders Esim req: map input images from their

3) Control Loss: To guide our model to learn features
that are useful for driving, we also used a control loss

respective domains to a latent space Z which is used for predicting £con.trol, which iSA an L1 loss between the controller’s
vehicle controls ¢. This common latent space is learned through predicted steering ¢ = C(F4(X4)) and the ground truth
direct and cyclic losses as part of learning image-to-image trans- given by the autopilot, ¢, shown in Figure 3c!

lation, indicated conceptually in Figure E and in Section III-B,
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Learning to Drive from Simulation without Real World Labels

Two directions generator: Adversarial Loss

X~ E._ G, X .~ D. T/F : NN Ty
4) Adversarial Loss: Both the image-translator and the
discriminators were optimised with the Least-Squares Gen-
R erative Adversarial Network (LSGAN) objective proposed
X 6" X T/F by [17]. The discriminator (3) and generator (4) adversarial
losses ensured that translated images resembled those from

Z

- & the chosen domain.

d €{sim, real} ‘CLSGAN (‘D) = EXdiata [(D(X) - 1)2]+ (3)

2
Fig. 2: Model architecture for domain-transfer from a simulated Eznpz(2)|(D(G(Z)) = 0)]
domain to real-world imagery, jointly learning control and domain Lrsean(G) =Ezp,(2)[(D(G(2)) —1)’] @
translation. The encoders Esim req: map input images from their
respective domains to a latent space Z which is used for predicting
vehicle controls ¢. This common latent space is learned through
direct and cyclic losses as part of learning image-to-image trans-
lation, indicated conceptually in Figure E and in Section III-B,
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Learning to Drive from Simulation without Real World Labels

Two directions generator: Perceptual Loss

Xsi;’ Esim Gsim _’Xsim_’ Dsim T/F
5) Perceptual Loss: To encourage consistent semantic
content across the two domains, we employed the use
X > B G. % - D_ T/F of a pre-trfuped VGG [27] quel, which was applied to
= = = teal - both the original and translated images. The perceptual loss
Loperceptual Was expressed as the difference between the
Z;

- < features extracted from the last convolutional layer in the
VGG16 model for a given input image and its translated
counterpart. Extracted features were normalised via Instance

d €{sim, real}

Fig. 2: Model architecture for domain-transfer from a simulated

; : . : : Norm (IN) [31] following the result from Huang et al.
domain to real-world imagery, jointly learning control and domain ) ) )
translation. The encoders Es;y, req; map input images from their [10] demonstrating that applying IN before computing the

respective domains to a latent space Z which is used for predicting feature distance makes the perceptual loss more domain-

vehicle controls ¢. This common latent space is learned through invariant.
direct and cyclic losses as part of learning image-to-image trans-
lation, indicated conceptually in Figure E and in Section I1I-B.
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Learning to Drive from Simulation without Real World Labels

Two directions generator: Latent Reconstruction Loss

X =B G ~X - D T/F
sum sim s1m sim sim
6) Latent Reconstruction Loss: Ideally we wanted to
X - E & >X - D T/F encode the semantic content of the images within the latent
real real real real real .. . .
space such that Z is independent of the domain from which
R an image came. We therefore applied a latent reconstruction
—" < loss Lzrecon, an L1 loss between the latent representation
Z

d €{sim, real) of an image Z; and the reconstruction of the latent repre-
_ , , , sentation after it was decoded to the other domain and then
Fig. 2: Model architecture for domain-transfer from a simulated encoded once more, Z7¢" = Ey (Ga (Z4)).

domain to real-world imagery, jointly learning control and domain
translation. The encoders Esim req: map input images from their
respective domains to a latent space Z which is used for predicting
vehicle controls ¢. This common latent space is learned through
direct and cyclic losses as part of learning image-to-image trans-
lation, indicated conceptually in Figure E and in Section I1I-B.
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Learning to Drive from Simulation without Real World Labels

Experiment

(a) The 250m real-world rural (b) A procedurally generated
driving route, coloured in blue. curvy driving route in simulation.

(a) Simulated urban world. (b) The real-world autonomous vehicle used for (c) An example of the real-world urban roads used
all experiments. for closed loop testing in Cambridge, UK.

Fig. 6: Urban setting: illustrations of the simulated and real-world domains for urban road scenes. Despite quite a large appearance
change from the cartoon-like simulated world to the real-world, our model is able to successfully transfer the learned control policy to
drive in in the real world, with no real world labels.

(c) Real-world rural road. (d) Simulated road.

Fig. 4: Rural setting: aerial views of the real-world (a) and
simulated driving routes (b), along with example images from each
domain showing the perspective from the vehicle (c, d).

FEES LAVIDA
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Learning to Drive from Simulation without Real World Labels

Experiment
TABLE II: Open-loop control metrics on the simulation and real TABLE III: On-vehicle performance, driving 3km on the rural
test datasets from Table T. driving route in 4al For policies unable to drive a lap with < 1
' intervention, we terminated after one 250m lap (7).
Simulation Real
MAE BallMAE MAE BalMAE Mean distance / intervention (metres)
. _ . T
Drive-Straight 0043 0087 0019 0093 orvesraight =
Simple Transfer 0.05 0.055 0.265 0.272 mp’e fransier ;
Real-to-Sim Translation - - 0.261 0.234 R.eal-to-Slm Translat%on 10 ;
Sim-to-Real Translation - - 0.059  0.045 Sim-to-Real Translation 281
Latent Feature ADA  0.040  0.047 0032  0.071 Latent Feature ADA 15
Ours 0.017  0.018  0.081  0.087 Ours No intervention over 3km
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VR Goggles for Robots: Real-fto-sim Domain Adaptation for Visual Control

Observation adaptation for indoor-robot and outdoor autonomous driving

(a) simulated indoor

(c) simulated outdoor (d) real outdoor

Fig. 6: Samples from the simulated environment (left) and
the real world (right) used in our indoor (top) and outdoor
(bottom) navigation experiments.
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VR Goggles for Robots: Real-fto-sim Domain Adaptation for Visual Control

VG Goggles

DRL
trained

in S

outdoor

'@GANQ

Fig. 1: The VR-Goggles pipeline. We depict the computation of the losses Loangs Leyc,,» Lsemr and Lsnites. We present both
outdoor and indoor scenarios, where the adaptation for the outdoor scene is trained with the semantic loss L., (since its
simulated domain CARLA has ground truth semantic labels to train a segmentation network fs), and the indoor one without
(since its simulated domain Gazebo does not provide semantic ground truth). The components marked in red are those involved
in the final deployment: a real sensor reading is captured (r ~ prea), then passed through the generator G's to be translated
into the simulated domain S, where the DRL agents were originally trained; the translated image $ is then fed to the DRL
policy, which outputs control commands. For clarity, we skip the counterpart losses Lgany > Leyc » Loomz and Loiies »

Loanz (Gr, Dr; S, R) =Ep,, [log Dr(r)] +
CycleGAN Ep,, [log(1 = Dr(GR(5)))]s  Leyer (Gs, Gr;R) = Ep,, [[|GR(Gs(r)) —7(l1],
Lcans(Gs; Ds; R, S) =Ky, [log Ds(s)] + Loy, (Gr,Gs;8) = Eyp,, [||Gs(Gr(3)) — s||,]-
Ep,.. [log(1 — Ds(Gs(r)))],
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VR Goggles for Robots: Real-fto-sim Domain Adaptation for Visual Control

VG Goggles

Semantic Loss

DRL
trained
in S

outdoor

'@GAN;

Fig. 1: The VR-Goggles pipeline. We depict the computation of the losses Lgans, [lcyCR, Lsemz and Lgirs. We present both
outdoor and indoor scenarios, where the adaptation for the outdoor scene is trained with the semantic loss Ly, (since its
simulated domain CARLA has ground truth semantic labels to train a segmentation network fs), and the indoor one without
(since its simulated domain Gazebo does not provide semantic ground truth). The components marked in red are those involved
in the final deployment: a real sensor reading is captured (r ~ pra), then passed through the generator Gs to be translated
into the simulated domain S, where the DRL agents were originally trained; the translated image § is then fed to the DRL
policy, which outputs control commands. For clarity, we skip the counterpart losses LcaNrg s Leyegs Lsems and Lz, -

Assuming that for iﬁiages from domain S, the ground truth
semantic labels Y are available, a semantic segmentation

network fs can be obtained by minimizing the cross-entropy r ( Gs:R fS) =E, [CrossEnt( fs (’r) fS( Gs (7‘)))]
semp ) ) real Y *

loss Es.s[CrossEnt(Y, fs(s))]. We further assume that the

ground truth semantic for domain R is lacking (which is Lsems (GR; S, fs) = Ep,, [CrossEnt(fs(s), fs(Gr(5)))],

the case for most real scenarios), meaning that fr is not
easily obtainable. In this case, we use fs to generate “semi”
semantic labels for domain R. Then semantically consistent
image translation can be achieved by minimizing the following
losses, which imposes consistency between the semantic maps
of the input and that of the generated output:
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VR Goggles for Robots: Real-fto-sim Domain Adaptation for Visual Control

Experiment

Indoor-1 Indoor-2 Indoor-3

Outdoor-1
VR-Goggles No-Goggles

No-Goggles

Outdoor-2
VR-Goggles No-Goggles

VR-Goggles  CycleGAN

Fig. 5: Real-world visual control experiments. Indoor (yellow):. A navigation policy is firstly trained in a simulated environment
(Fig. 6a) that is able to navigate to chairs based on visual inputs. Without retraining or finetuning, our proposed VR-Goggles
enables the mobile robot to directly deploy this policy in a real office environment (Fig. @), achieving 100% success rate in a
set of real-world experiments. Here Miss refers to test runs where the agent stays put or rotate in place and simply ignores the
chair even when they are in sight as the policy trained in the simulation could not cope with the drastically visually different
inputs (No-Goggles), or due to the inconsistency of the translated subsequent outputs which hinders the successful fulfilment
of the goal-reaching task (CycleGAN). Hit refers to frames where the agent captures the chair in sight and outputs commands
to move towards it. Qutdoor (cyan): An autonomous driving policy (via conditional imitation learning [28]) is trained in Carla
daytime (Fig. 6¢), a VR-Goggles model is trained to translate between Carla daytime and Robotcar nighttime (Fig. 6d), which
enables the real-world nighttime deployment of the trained policy.
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Domain Randomization and Domain Adaptation are not Mutually Exclusive

[1] DARLA: Improving Zero-Shot Transfer in Reinforcement Learning

ms(als*; 0)

L‘; . . DAE
B-VAE Lsfiﬂ‘j B z Q z;

— S()

Figure 1. Schematic representation of DARLA. Yellow represents
the denoising autoencoder part of the model, blue represents the
[3-VAE part of the model, and grey represents the policy learning
part of the model.

[2] Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via Randomized-to-Canonical Adaptation Networks

Randomized
Simulation

action

Agent

Training

Agent
v

action

[3] Meta Reinforcement Learning for Sim-to-real Domain Adaptation
[4] Unsupervised Domain Adaptation with Dynamics-Aware Rewards in Reinforcement Learning
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The Framework of Unsupervised Domain Adaptation in Sim2Real RL

external view

e

L

2

N map” = min Dist;s(SimData||map(RealData))

) map

&

i k& -> trained via GAN-style algorithms
Fig. An example of reality-gap which is the core Fig. The framework of Unsupervised Domain Adaptation for

challenge in Sim2Real RL [1] Sim2Real RL

Unsupervised domain adaptation (UDA) learns a mapping function to align the
data distribution of the source and the target domain to handle the challenge of

‘{] ﬁ X % reality-gap on observation-space for Sim2Real RL l-Am

Learning,AndMining,from DatA
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Cross-Modal UDA: A cost-efficient Framework for Sim2Real RL

Policy Sim

-— Image-to-image
UDA
“Pos of left hand”: [p1,p2,p3], Cross-modal
“Pos of right hand”: [p4,p5,p6], <
“Pos of target”: [p7,p8,p9l, UDA

Image-to-image UDA infroduce three extra cost, which is
ignored in discussion in previous work.

1. human labor of building a visual simulator

2. huge computation resource required by running the simulator
3. inferior policy training on visual simulator

Ifl> Can be solved in Cross-modal UDA

NANJING UNIVERSITY
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Ill-posedness of the raw objective in current UDA solutions

Ot
" Since s; and s, have similar probabilities, mapping an

instance o; to anywhere of a similar probability in the source
domain is “"reasonable” if we only consider distribution
matching.

Fig. An example of ill-posedness of the distribution In image-to-image UDA, current methods rely on additional

minimization objective in current UDA algorithms constraints on modality consistency to handle the problem
implicitly

- special model structure [2], e.g. U-Net, Cycle-GAN;
- auxiliary losses, e.g. geometry consistency [3];

. » However, these constraints cannot hold anymore in Cross-
modal UDA setting.

o,
vk, .
0 Q 3
e
2

-2 0 2 -1 0 1 2

Fig. A toy example of ill-posed UDA

Our research question: Can we handle the ill-posedness of the

) bjective directly?
(ﬁ'ﬁj’\% objecTtive airectly LM

L & . ,
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Any other potential way to handle the ill-posedness of the objective?

(a) Mapping only considering state-distribution (b) Mapping with sequential structure
matching

If we can make use of the sequential structure in the Markov Decision Processes,
the historical information will give us the ability to identify the difference between s;" and s,

then the proposed ill-posedness of the objective will be fixed.

7
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Reformulate the objective of UDA in RL based on the framework of
variational inference

(a) Generation process in the source domain  (b) Generation and inference process in the target
domain

Fig. The generation and inference process of UDA based on the framework of

variational inference

min Ere [Dicc [a5(r* | 7°) ] p(r* | 7°)]
|} (ELBO)

. maxEro [Ezs g, (rs|r0) [log po (7° | 7°)] — Dxr [q¢ (7° | 7°) || p(7°)]
YTy R e | LaVoA

- k )
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Differentiable Optimization Objectives

rg%xIETo [E%swqd)(,rsl.ro) [log pg (7° | 7°)] — DkL [CIqb (7 [ 7°) ] P(Ts)]]
T

n-;aéX]ETONDO [ § :]E§t~q¢(st|§t_1,at_1,ot) [lOgPO(Ot | §t7 Ot—].? a’t—l)
’ t=1 Ve Trajectory-distribution mismatch loss

_)‘D log (]- - Dw* (§t7 Qa¢, ht—l))]]7

Discriminator loss

[ Reconstruction loss

T

s.t. w* = argmax Ersnpe[ ) log Du(st, ar, hi—1)]
“ t=1
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Embedded Dynamics Model for Stable Training

Inference Function only outputs a small As;. The
main part is from Embedded DM (p,).

5t =P¢p(5t—1, at—l) + aAs;,
whereAst ~ q¢(AS | St—1,4dt-—1, Ot)

The parameters of Embedded DM are copied from
a DM trained by:

_ 2
msf!n IE(S,a,s’)NDSUD‘é[(p‘f’ (s,2) — Sl) ]

FEEES:

V’«l» S
{5 NANJING UNIVERSITY

St—q—
St
ag1—
ﬁeriodically

update
\
| Embedded-DM '—‘ St
$t-1 I { RNN cell j* As; St
. ]
l encoder l

(1 0¢

Figure: Detailed Structure of the
Inference Function with Embedded
DM

LAIVIDA

Learning And/Mining, from DatA



Table of Contents

1. Background and Motivation
2. Cross-Modal Domain Adaptation with Sequential structure (CODAS)
3. Experiment

4. Take-home Messages

Whikd LAVIDA

¥ NANJING UNIVERSITY Learning,And Mining from DatA




Comparative Evaluation in MuJoCo Tasks
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Figure 4: Training curves of different methods on MuJoCo.
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Figure 6: Root mean squared error between mapped states and ground-truth states. The solid lines denote the
mean value. The shadows denote the standard deviation.

For all of the tasks, CODAS can map the correct states (i.e., with the smallest MSE-loss to
the oracle states) and the performance of the deployment policies reach reasonable
performance (75%7~100%)

FEES

NANJING UNIVERSITY

LAVIDA

Learning And/Mining from DatA



Visualization of the Learned Mapping on MuJoCo Tasks

(b)

(c)

Fig. A visual illustration of (a) original images, (b) reconstructed images, and (c) re-rendered images of the
mapped states in Hopper.

Both reconstructed images and re-rendered images match the original ones well. Re-
rendered images can even match the original ones well in the last falling frames which
are sparse in the dataset.
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Performance on Robot Hand Manipulation Tasks

Table: The reward ratio in hand-manipulation tasks

Tasks | hammer | pen | door | relocate

Reward Ratio | 0.820 | 0.701 | 0.886 | 0.090

In three out of four tasks, CODAS yields reasonable mapping functions for policy deployment.
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Take-home Message

KEY point:

The Formulation of Variational Inference which considered the sequential structure in MDP can
handle the ill-posedness of the objective and solve the UDA problem without relying on the
knowledge of modality consistency.

Future work:

1. CODAS solve the UDA problem in a general way, it can be adopted to image-to-image
UDA in theory;

2. If the ill-posedness of the CODAS objective still exist?

3. In the current formulation, we assume the policies/dynamics in the source and target
domains are the same, which might not hold in real-world applications. By modeling the
mismatching of dynamics models and data-collected policies into the CODAS framework,
we can build a more practical UDA algorithm.

Ohixs LAVIDA
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