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An example of Sim2Real Reinforcement Learning

Simulation Real world

An example of reality-gap which is the core challenge
in Sim2Real RL
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The Framework of Unsupervised Domain Adaptation in Sim2Real RL

external view
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i k& -> trained via GAN-style algorithms
Fig. An example of reality-gaps in observation-space Fig. The framework of Unsupervised Domain Adaptation for

in Sim2Real RL [1] Sim2Real RL

Unsupervised domain adaptation (UDA) learns a mapping function to align the
data distribution of the source and the target domain to handle the challenge of

: ij Z K % reality-gap on observation-space in Sim2Real RL
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Cross-Modal UDA: A cost-efficient Framework for Sim2Real RL

Policy Sim
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Cross-Modal UDA: A cost-efficient Framework for Sim2Real RL

Image-to-image
UDA

Image-to-image UDA introduce three extra cost, which is ignored in discussion in previous work.
1. human labor of building a visual simulator

2. huge computation resource required by running the simulator
3. inferior policy training on visual simulator.
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Cross-Modal UDA: A cost-efficient Framework for Sim2Real RL

Policy Sim
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UDA
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“Pos of left hand”: [p1,p2,p3], Cross-modal
I — — < “Pos of right hand”: [p4,p5,p6], <
“Pos of target”: [p7,p8,p9l, UDA
}

Image-to-image UDA introduce three extra cost, which is
ignored in discussion in previous work.
1. human labor of building a visual simulator

2. huge computation resource required by running the simulator
3. inferior policy training on visual simulator.
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Ill-posedness of the raw objective in current UDA solutions

map” = min Dist;s(SimData||map(RealData))
map

-> trained via GAN-style algorithms

We cannot adopt the previous Unsupervised Domain Adaptation to Cross-Modal UDA setting. .

) VS
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Ill-posedness of the raw objective in current UDA solutions
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Fig. An example of ill-posedness of the distribution
minimization objective in current UDA algorithms

map* = gll;g Dist;s(SimData||map(RealData)) >

Since s; and s;’ have similar probabilities, mapping an instance o, to anywhere of a similar probability in the source domain
is “reasonable” if we only consider distribution matching.

In image-to-image UDA, current methods rely on additional constraints on modality consistency to handle the
problem implicitly

- special model structure [2], e.g. U-Net, Cycle-GAN;

- auxiliary losses, e.g. geometry consistency [3];

However, these constraints cannot hold anymore in Cross-modal UDA setting.
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Ill-posedness of the raw objective in current UDA solutions
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Fig. An example of ill-posedness of the distribution Fig. A toy example of ill-posed UDA

minimization objective in current UDA algorithms

Since s; and s;’ have similar probabilities, mapping an instance o, to anywhere of a similar probability in the source domain
is “reasonable” if we only consider distribution matching.

Our research question: Can we handle the ill-posedness of the objective directly?
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Any other potential way to handle the ill-posedness of the objective?

(a) Mapping only considering state-distribution (b) Mapping with sequential structure
matching

If we can make use of the sequential structure in the Markov Decision Processes,
the historical information will give us the ability to identify the difference between s;" and s,

then the proposed ill-posedness of the objective will be fixed.
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Reformulate the objective of UDA in RL based on the framework of
variational inference

Shaded nodes: Observable
White nodes: Unobservable

Nres

(a) Generation process in the source domain  (b) Generation and inference process in the target
domain

Fig. The generation and inference process of UDA based on the framework of
variational inference
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Reformulate the objective of UDA in RL based on the framework of
variational inference

Shaded nodes: Observable
White nodes: Unobservable

(a) Generation process in the source domain  (b) Generation and inference process in the target
domain

Fig. The generation and inference process of UDA based on the framework of

@ variational inference

min Ere [Dic [96(r* | 7°) || p(r* | 7°)] D KL Divergence
T: trajectory
Y (ELBO) 0: observation
maxEro [E+s~q¢(7s|70) [log po (7° | 7°)] — Dk [g4 (7° | 7°) | p(Ts)]] s: state
’ | | | ¢: parameters to learn
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Reformulate the objective of UDA in RL based on the framework of
variational inference

m¢in Ero [Dx1, [q4(7° | 7°) || p(7° | 7°)]] Dy, : KL Divergence
T: trajectory
Y (ELBO) 0: observation
max E,o [Efs,\,q o)) log pa (7° | 7°)] — Dkw [q4 (7° | 7°) || p(Ts)]] s: state

0
¢ | ‘ | | ¢: parameters to learn

N
_ Divergence between prior and
Reconstruction Error jnferred state distributions
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T [ Reconstruction loss
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s.t. w* = argmax Ere~ps[ Y log Du(st,ar, hi—1)]
& t=1
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Embedded Dynamics Model for Stable Training

Inference Function only outputs a small As;. The
main part is from Embedded DM (p,).

5t =P¢p(5t—1, at—l) + aAs;,
whereAst ~ q¢(AS | St—1,4dt-—1, Ot)

The parameters of Embedded DM are copied from
a DM trained by:

_ 2
msf!n IE(S,a,s’)NDSUD‘é[(p‘f’ (s,2) — Sl) ]
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Figure: Detailed Structure of the
Inference Function with Embedded
DM
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Overall Model Structure
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Performance on MuJoCo Tasks

Swimmer Walkerzd

Half Cheetah Inverted Double Inverted Pendulum

‘fj % y"\,% Pendulum
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Comparative Evaluation in MuJoCo Tasks
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Figure 4: Training curves of different methods on MuJoCo.
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Figure 6: Root mean squared error between mapped states and ground-truth states. The solid lines denote the
mean value. The shadows denote the standard deviation.

For all of the tasks, CODAS can map the correct states (i.e., with the smallest MSE-loss to
the oracle states) and the performance of the deployment policies reach reasonable
performance (75%7~100%)
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Visualization of the Learned Mapping on MuJoCo Tasks

(b)

(c)

Fig. A visual illustration of (a) original images, (b) reconstructed images, and (c) re-rendered images of the
mapped states in Hopper.

Both reconstructed images and re-rendered images match the original ones well. Re-
rendered images can even match the original ones well in the last falling frames which
are sparse in the dataset.
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Performance on Robot Hand Manipulation Tasks

Relocate Door

y o
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Performance on Robot Hand Manipulation Tasks

Data collecting policy Re-rendered video Reconstructed video

Tasks ‘ hammer‘ pen ‘ door ] relocate

Reward Ratio | 0.820 | 0.701 | 0.886 | 0.090

In three out of four tasks, CODAS vyields reasonable
mapping functions for policy deployment. |
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Take-home Message

KEY point:

The Formulation of Variational Inference which considered the sequential structure in MDP can
handle the ill-posedness of the objective and solve the UDA problem without relying on the
knowledge of modality consistency.

Future work:

1. CODAS solve the UDA problem in a general way, it can be adopted to image-to-image
UDA in theory and the practical adoption can be fried.

2. In the current formulation, we assume the policies/dynamics in the source and target
domains are the same, which might not hold in real-world applications. By modeling the
mismatching of dynamics models and data-collected policies into the CODAS framework,
we can build a more practical UDA algorithm.
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