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Can we the handle the decision-
making problem in out-of-support
regions directly?
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. The extrapolation errors of learned dynamics
models will mislead the direction of policy
learning.

Conservatism guarantees the lower-

. bound performance of the learned policy,-

but also limits the upper-bound
performance.
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Offline Model-based Adaptable Policy Learning

An ideal solution, named probe-reduce paradigm, and its practical implementation for decision-making !
in out-of-support regions
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Practical implementation: feed the interaction trajectory 7y in the
deployment environment fo the RNN context extractor and infer the
environment-context for each timestep t. Repeat until the context is
converged to z then we find the optimal policy m(als, z)

Deployment env
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2. Learn an optimal
policy for each
dynamics model

Practical implementation:
Learn an adaptable
meta-policy (based on an
RNN context extractor).

Comparative Evaluation on Benchmark Tasks . Ability of adaptable policy in out-of-support |
| regions
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We first test MAPLE in standard offline RL tasks with D4RL datasets [3].
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Table 1: Results on MuJoCo tasks. Each number is the normalized score proposed by Fu et al. [30]
of the policy at the last iteration of training, + standard deviation. Among the offline RL. methods,

m m

we bold the highest mean for each task. (a) Walker2d (b) Hopper
Environment | Dataset |  MAPLE | MOPO | MOPO-loose | SAC | BEAR | BC | BRAC-v | CQL As = &
Walker2d random 217403 | 13.6+26 80+54| 4.1 67| 98 05| 7.0 N
Walker2d medium 565 = 106 | ‘L8193 326+ 130 0.9 332 6.6 813 | 792 3
Walker2d mixed 767 £3.8 | 39.0+9.6 335 k22 3.5 29.3 11.3 04 | 26.7 3
Walker2d med-expert | 73.8 £8.0 | 44.6+129 | 66.7+148 | -0.1 26.0 6.4 66.6 | 111.0 T T T T
HalfCheetah | random 384+13 | 354+£15 354+£2.1 | 305 255 2.1 28.1 KR N e 74 I —
medium 504+19 | 423+1.6 440+ 1.6 | 43 38.6 | 36.1 455 | 44 LGl L
HalfCheetah | mixed 59.0+06 | 53.1+20| 369150 | -24 36.2 | 38.4 459 | 46.2
HalfCheetah | med-expert | 63.5 £ 6.5 | 63.3 4 38.0 150+ 6.0 1.8 517 | 358 453 | 624 " "
Hopper random 106 0.1 | 11.7+£04 106+ 0.6 | 11.3 9.5 1.6 12.0 | 108 (c) Walker2d (d) Hopper
Hopper medium 21,1 £ 1.2 | 28.0+ 124 169+ 24 0.8 47.6 | 29.0 323 | 58.0 , , , ,
Hopper mised 875+ 108 | 67.5+24.7 3.1+ 6.5 1.9 10.8 11.8 09 | 486 Figure 10: Illustration ‘of hyper-parameters anglysw onm. In‘th'e first row, we compare the normalized
Pswsinan R — 425+ 4.1 237 + 6.0 251+ 1.8 1.6 40 | 1119 0.8 08.7 return of the b_est settmg and the loosest setting. The x-axis is the modeI size m. qu egch m, the
PP p legend “best” is the setting that has the largest performance, among which model size is m. The

The performance of MAPLE on 7 tfasks is better than other SOTA algorithms.
Besides, MAPLE reaches the best performance among the SOTA model-based
conservative policy learning algorithms in 10 out of the 12 tasks.
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MAPLE with large dynamics model set
Table 2: Results on MuJoCo tasks with MAPLE-200.

| In all of the tasks, MAPLE-200 reaches at least similar performance to MAPLE.
In the tasks like Walker2d-med-expert, HalfCheetah-mixed, Hopper-medium, and |
. Hopper-med-expert, the performance improvement of MAPLE-200 is significant. |
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legend “loosest” is the setting that H = 40. In the second row, we compare the best constraint
setting for each model size m. For each m, the legend “H*” is the setting that H value of the
best-performance setting among which model size is m.

Increase the model-set size is significantly helpful to find a

better and robust adaptable policy via expanding the exploration

boundary.

Conclusion and Take-home Messages

| |
i i
i i
| Environment | Dataset MAPLE-200 MAPLE IMAPLE gives another direction to handle the offline |
| Walker2d random 2214011 2174+03 Imodel-based learning problem: Learn to adapt in out-of- |
| Walker2d medium 81.3 + 0.1 | 56.3 & 10.6 |support regions. |
I Walker2d mixed 754 4+09 | 76.7 + 3.8 | I
| Walker2d med-expert | 107.0 £ 0.8 | 73.8 £8.0 | I
i HalfCheetah | random 41.5+3.6 | 384+13 | |
I HalfCheetah mfadium 485+14 | 504 +1.9 Future work: |
| HalfCheetah | mixed 695+0.2 | 59.04+0.6 I |
| ggggeﬁeetah ir;iili;)e;pert i(S);I i 3% ?32 i g? |1 Generalization ability of the environment-context |
| Hopper mediom 441+26 | 211+12 | extractor with limited dynamics model. |
| Hopper iiizced 850+10 | 87.5 + 10.8 i2. Efficient/diverse dynamics model set generation |
| Hopper med-expert VI3 | 425 4.l | process. |
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