MAPLE: Offline Model-based Adaptable Policy Learning

Xiong-Hui Chen¹, Yang Yu^{1,3,*}, Qingyang Li², Fan-Ming Luo¹, Zhiwei Qin², Wenjie Shang², Jieping Ye² ¹ National Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China ² AI Labs, Didi Chuxing ³ Polixir.ai

Offline Model-based Adaptable Policy Learning

An ideal solution, named probe-reduce paradigm, and its practical implementation for decision-making in out-of-support regions

Experiment results and Discussion

Comparative Evaluation on Benchmark Tasks

We first test MAPLE in standard offline RL tasks with D4RL datasets [3].

Table 1: Results on MuJoCo tasks. Each number is the normalized score proposed by Fu et al. [30] of the policy at the last iteration of training, \pm standard deviation. Among the offline RL methods, we bold the highest mean for each task.

Environment	Dataset	MAPLE	MOPO	MOPO-loose	SAC	BEAR	BC	BRAC-v	CQL
Walker2d	random	$\textbf{21.7} \pm \textbf{0.3}$	13.6 ± 2.6	8.0 ± 5.4	4.1	6.7	9.8	0.5	7.0
Walker2d	medium	56.3 ± 10.6	11.8 ± 19.3	32.6 ± 18.0	0.9	33.2	6.6	81.3	79.2
Walker2d	mixed	$\textbf{76.7} \pm \textbf{3.8}$	39.0 ± 9.6	35.7 ± 2.2	3.5	25.3	11.3	0.4	26.7
Walker2d	med-expert	73.8 ± 8.0	44.6 ± 12.9	66.7 ± 14.8	-0.1	26.0	6.4	66.6	111.0
HalfCheetah	random	$\textbf{38.4} \pm \textbf{1.3}$	35.4 ± 1.5	35.4 ± 2.1	30.5	25.5	2.1	28.1	35.4
HalfCheetah	medium	$\textbf{50.4} \pm \textbf{1.9}$	42.3 ± 1.6	44.0 ± 1.6	-4.3	38.6	36.1	45.5	44.4
HalfCheetah	mixed	$\textbf{59.0} \pm \textbf{0.6}$	53.1 ± 2.0	36.9 ± 15.0	-2.4	36.2	38.4	45.9	46.2
HalfCheetah	med-expert	$\textbf{63.5} \pm \textbf{6.5}$	63.3 ± 38.0	15.0 ± 6.0	1.8	51.7	35.8	45.3	62.4
Hopper	random	10.6 ± 0.1	11.7 ± 0.4	10.6 ± 0.6	11.3	9.5	1.6	12.0	10.8
Hopper	medium	21.1 ± 1.2	28.0 ± 12.4	16.9 ± 2.4	0.8	47.6	29.0	32.3	58.0
Hopper	mixed	$\textbf{87.5} \pm \textbf{10.8}$	67.5 ± 24.7	83.1 ± 6.5	1.9	10.8	11.8	0.9	48.6
Hopper	med-expert	42.5 ± 4.1	23.7 ± 6.0	25.1 ± 1.8	1.6	4.0	111.9	0.8	98.7

Ability of adaptable policy in out-of-support regions

The performance of MAPLE on 7 tasks is better than other SOTA algorithms. Besides, MAPLE reaches the best performance among the SOTA model-based conservative policy learning algorithms in 10 out of the 12 tasks.

MAPLE with large dynamics model set

Table 2: Results on MuJoCo tasks with MAPLE-200.

Environment	Dataset	MAPLE-200	MAPLE
Walker2d	random	$\textbf{22.1} \pm \textbf{0.1}$	21.7 ± 0.3
Walker2d	medium	$\textbf{81.3} \pm \textbf{0.1}$	56.3 ± 10.6
Walker2d	mixed	75.4 ± 0.9	$\textbf{76.7} \pm \textbf{3.8}$
Walker2d	med-expert	$\textbf{107.0} \pm \textbf{0.8}$	73.8 ± 8.0
HalfCheetah	random	$\textbf{41.5} \pm \textbf{3.6}$	38.4 ± 1.3
HalfCheetah	medium	48.5 ± 1.4	$\textbf{50.4} \pm \textbf{1.9}$
HalfCheetah	mixed	$\textbf{69.5} \pm \textbf{0.2}$	59.0 ± 0.6
HalfCheetah	med-expert	55.4 ± 3.2	$\textbf{63.5} \pm \textbf{6.5}$
Hopper	random	$\textbf{10.7} \pm \textbf{0.2}$	10.6 ± 0.1
Hopper	medium	$\textbf{44.1} \pm \textbf{2.6}$	21.1 ± 1.2
Hopper	mixed	85.0 ± 1.0	$\textbf{87.5} \pm \textbf{10.8}$
Hopper	med-expert	$\textbf{95.3} \pm \textbf{7.3}$	42.5 ± 4.1

In all of the tasks, MAPLE-200 reaches at least similar performance to MAPLE. In the tasks like Walker2d-med-expert, HalfCheetah-mixed, Hopper-medium, and Hopper-med-expert, the performance improvement of MAPLE-200 is significant.

[1] Yu, Tianhe, et al. "Mopo: Model-based offline policy optimization." arXiv preprint arXiv:2005.13239 (2020) [2] Kidambi, Rahul, et al. "Morel: Model-based offline reinforcement learning." arXiv preprint arXiv:2005.05951 (2020). [3] Fu, Justin, et al. "D4rl: Datasets for deep data-driven reinforcement learning." arXiv preprint arXiv:2004.07219 (2020).

Figure 10: Illustration of hyper-parameters analysis on m. In the first row, we compare the normalized return of the best setting and the loosest setting. The x-axis is the model size m. For each m, the legend "best" is the setting that has the largest performance, among which model size is m. The legend "loosest" is the setting that H = 40. In the second row, we compare the best constraint setting for each model size m. For each m, the legend "H*" is the setting that H value of the best-performance setting among which model size is m.

Increase the model-set size is significantly helpful to find a better and robust adaptable policy via expanding the exploration boundary.

Conclusion and Take-home Messages

MAPLE gives another direction to handle the offline |model-based learning problem: Learn to adapt in out-ofsupport regions.

Future work:

- Generalization ability of the environment-context 1. extractor with limited dynamics model.
- Efficient/diverse dynamics model set generation process.