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Offline Model-based Adaptable Policy Learning
for Decision-making in Out-of-Support Regions

Xiong-Hui Chen∗, Fan-Ming Luo∗, Yang Yu, Qingyang Li, Zhiwei Qin, Wenjie Shang, Jieping Ye

Abstract—In reinforcement learning, a promising direction to avoid online trial-and-error costs is learning from an offline dataset. Current
offline reinforcement learning methods commonly learn in the policy space constrained to in-support regions by the offline dataset, in
order to ensure the robustness of the outcome policies. Such constraints, however, also limit the potential of the outcome policies. In this
paper, to release the potential of offline policy learning, we investigate the decision-making problems in out-of-support regions directly
and propose offline Model-based Adaptable Policy LEarning (MAPLE). By this approach, instead of learning in in-support regions, we
learn an adaptable policy that can adapt its behavior in out-of-support regions when deployed. We give a practical implementation of
MAPLE via meta-learning techniques and ensemble model learning techniques. We conduct experiments on MuJoCo locomotion tasks
with offline datasets. The results show that the proposed method can make robust decisions in out-of-support regions and achieve better
performance than SOTA algorithms.

Index Terms—Offline reinforcement learning, model-based reinforcement learning, adaptable policy learning, meta learning.
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1 INTRODUCTION

R ECENT studies have shown that reinforcement learning
(RL) is a promising approach for real-world applications,

e.g., sequential recommendation systems [1, 2, 3, 4] and
robotic locomotion skill learning [5, 6]. However, the trial-
and-error of RL in the real world [7] obstructs further
applications in the scenarios where online data collection is
expensive or dangerous, e.g., in robotics [8], healthcare [9],
and recommender systems [10].

Offline (batch) RL learns a policy within a static dataset
collected by a behavior policy without additional interactions
with the environment [11, 12, 13, 14]. Since it avoids costly
trial-and-error in real-world environments, offline RL is a
promising way to handle the challenge in cost-sensitive
applications. A significant challenge of offline RL is in
answering counterfactual queries, which ask about how the
performance (e.g., Q value) would have been if the agent
were to execute an unseen action sequence, then learning
to make optimal decisions based on the performance [11].
Fujimoto et al. [13] have shown that the distributional shift
of states and actions, which comes from the discrepancy
between evaluated policies and behavior policies, often leads
to large extrapolation errors in value function estimation.
In traditional model-free algorithms, the extrapolation error
in value function estimation hurts the generalization perfor-
mance of the learned policies. Since the additional samples,
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which can correct value estimation errors, are unavailable in
the offline setting, the performance of learned policies based
on value function is unstable [13].

On the other hand, model-based RL techniques, which
learn dynamics models from collected datasets and learn the
value function and policies based on the dynamics models,
do not need to estimate the value functions relying on the
collected datasets. However, similar challenges occur in
dynamics model approximation. The dynamics model might
overfit the limited dataset and suffer extrapolation errors
in regions that behavior policies have not visited, which
causes instability of the learned policy when deployment [15].
Here we call it out-of-support regions. Moreover, in model
inference, the compounding error, that is, the accumulated
prediction errors between simulation trajectories and real-
ity, would be large even if the one-step prediction error
is small [16, 17]. Recent studies in offline model-based
RL [15, 18] have made significant progress in MuJoCo
tasks [19]. These methods constrain policy sampling in
dynamics models for robust policy learning. By using large
penalty [15] or trajectory truncation [18, 15] in the regions
with large prediction uncertainty (uncertainty is a designed
metric to evaluate the confidence of prediction correctness)
or compounding error, policy exploration is constrained in
the regions of dynamics models where the predictions are
corrected with high confidence, so as to avoid exploiting
regions with risks of large extrapolation error. However, the
constraints on dynamics models lead to a conservative policy
learning process, which limits the potential of leveraging
dynamics models: The visits on states and actions in out-
of-support regions are more likely to be inhibited by the
constraints, making the learned policy restrict the agent to
be in similar regions as the behavior policy.

From the perspectives of counterfactual queries, we
consider that model-based RL is promising to handle offline
RL — ideal reconstructed dynamics models can simulate the
transition dataset without the distributional-shift problem
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given any policy, and the value function can be estimated via
the “simulated” transition dataset directly. The bottleneck of
offline model-based RL comes from the policy learning in the
approximated dynamics model with extrapolation error. In
this paper, instead of learning by tightly constraining policy
exploration in in-support regions, we investigate decision-
making in out-of-support regions directly. Finally, we pro-
pose a new offline policy learning framework, offline Model-
based Adaptable Policy LEarning (MAPLE), to address the
aforementioned issues. Ideally, MAPLE tries to model all
possible transition dynamics in the out-of-support regions.
Then an Adaptable policy is learned to be aware of each case
to adapt its behavior to reach optimal performance. In the
practical version of MAPLE, we use an ensemble technique
to construct ensemble dynamics models. To be aware of
each case of the transition dynamics and learn an adaptable
policy, we use a meta-learning technique that introduces an
extra environment-context extractor structure to represent
dynamics patterns, and the policy adjusts itself according to
the environment contexts.

We conduct experiments on the MuJoCo locomotion tasks.
The results show that the sampling regions for robust offline
policy learning can be extended by constructing transition
patterns in out-of-support regions to cover the real case.
The output adaptable policy yields better performance than
SOTA algorithms when deployed. MAPLE gives a new
direction to handle the offline policy learning problem in
the dynamics models: Besides constraining on sampling and
training dynamics models with better generalization, we can
also model out-of-distribution regions by constructing all
possible transition patterns.

2 RELATED WORK

Reinforcement learning (RL) has shown to be a promising
approach to complex real-world decision-making prob-
lems [1, 2, 3, 4]. However, unconstrained online trial-and-
error in the training of RL agents prevents further applica-
tions of RL in safety-critical scenarios since it might result
in large economic losses [11, 20, 21, 22]. Many studies
propose to overcome the problem by offline (batch) RL
algorithms [23]. Prior works on offline RL are based on

In-support region
Learned policies

(a) learn to adapt (MAPLE) (b) learn by constraining

Fig. 1: Illustration of MAPLE compared with learning
by constraining. The pointed lines represent the optimal
trajectories of the learned policies. There are several policies
in MAPLE since the method learns to adapt to multiple
dynamics models. The gray oval represents the in-support
region.

model-free algorithms. To overcome the extrapolation error,
which is introduced by the discrepancy between the offline
dataset and true state-action distribution of learned target

policies [13], these methods are designed to constrain target
policies to be close to the behavior policies [13, 14, 24], to
apply ensemble methods for robust value function estima-
tion [25]. Nevertheless, such methods typically prevent the
generalization of value functions beyond the offline data
because of policy constraints. To handle the problem, recent
studies also construct statistical confidence regions to obtain
pessimism value functions based on the uncertainty estima-
tion on out-of-support data, e.g., estimating the uncertainty
based on the disagreement of bootstrapped Q-functions [26],
or estimating the uncertainty based on the value function
learned by perturbed rewards [27].

On the other hand, recent works also showed that policy
learning with an approximated dynamics model has good
potential to take robust actions outside the action distribution
of behavior policies [18, 15]. The challenge comes from the
extrapolation error of the dynamics models in out-of-support
regions. To address the issues, these methods learn policies
from dynamics models with uncertainty constraints. Uncer-
tainty is a measure of prediction confidence on the next states.
The uncertainty is often computed by the inconsistency in the
ensemble dynamics model predictions for each state-action
pair. Kidambi et al. [18] construct terminating states based
on a hard threshold on uncertainty, while Yu et al. [15] use a
soft reward penalty to incorporate uncertainty. The penalty
constrains policy exploration and optimization to the regions
with high consistency for better worst-case performance in
the deployment environment [18, 15].

The difference between the aforementioned model-based
methods and MAPLE is shown in Figure 1. Compared with
previous methods [18, 15] learned by constraining (in Fig-
ure 1(b)), we learn to adapt to all possible dynamics transi-
tions in the states in out-of-support regions (in Figure 1(a)).
MAPLE uses a meta-learning technique of policy adaptation
to design the practical algorithm of decision-making in out-
of-support regions. Meta-learning [28] provides a way for
policy adaptation. In meta-learning, a meta-policy model
[29, 28] is learned from a set of source tasks and will adapt
to a new environment with a small number of samples.
Meta-based methods often need additional trajectories in the
target environment to update its parameter. Online system
identification (OSI) methods are to identify the environments
automatically [30, 31, 32, 33, 34]. OSI methods always contain
a unified policy (UP) and an environment-context extractor.
The environment-context extractor extracts the information
of the environment [31, 30, 33, 34]. The UP infers the action
with the concatenation of the environment information and
state as input. An environment-context extractor identifies
the environment as the policy executing and does not need
to update its parameter like meta-based methods. Thus, OSI
techniques possess the ability to adapt to a new environment
online.

There are also some studies on learning better dynamics
models for offline model-based RL: Autoregressive dynamics
model learning methods generate different dimensions of the
next state and reward sequentially conditioned on previous
dimensions for model learning in physics-based simulation
environments [35]; Generative adversarial framework learns
a dynamics model to generate a data distribution consistent
with the real distribution to improve the generalization
ability of model predictions to different policies [36, 37];
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The generalization ability of the dynamics models can also
be improved through a structured causal model [38].

3 BACKGROUND AND NOTATION

In the standard RL framework, an agent interacts with
an environment governed by a Markov Decision Process
(MDP) [39]. The agent learns a policy π(at|st), which chooses
an action at ∈ A given a particular state st ∈ S , at
each time-step t ∈ {0, 1, ..., T}, where T is the trajectory
length. S and A denote the state and action spaces, re-
spectively. The reward function rt = r(st, at) ∈ R eval-
uates the immediate performance of the action at given
the state st. The goal of RL is to find an optimal policy
π∗ that maximizes the multi-step cumulative discounted
reward (i.e., long-term performance). The objective of RL
is maxπ Jρ(π) := Eτ∼p(τ |π,ρ)

[∑T
k=0 γ

krk
]
, where γ is the

discount factor, and p(τ |π, ρ) is the probability of gen-
erating a trajectory τ := [s0, a0, ..., aT−1, sT ] under the
policy π and a dynamics model ρ(st+1|st, at). In particular,
p(τ | π) := d0(s0)

∏T−1
t=0 ρ(st+1 | st, at)π(at|st), where

d0(s0) is the initial state distribution. A common way to
find an optimal policy π∗ is to optimize the policy with
gradient ascent along ∇Jρ(π) [39, 40].

In the offline RL setting, we are given only a static dataset
D = {(si, ai, ri, si+1)} collected by some unknown policy.
The goal is to obtain a policy that maximizes Jρ by only
using the static dataset. In the standard scheme of offline
model-based RL, we often learn a dynamics model ρ̂ or a set
of dynamics model ρ̂ ∈ T from D to predict the next states,
then policies are learned based on the dynamics models. In
this article, we follow the same setting as MOPO [15] where
the reward functions are the same between policy learning
and data collection in theoretical analysis. In practice, reward
function models are learned to predict the rewards in the
same manner as the dynamics model learning.

4 OFFLINE MODEL-BASED ADAPTABLE POLICY
LEARNING

We argue that in current offline model-based methods, the
constraints of sampling to in-support regions of the dynamics
model lead to a conservative policy learning process, limiting
the potential of leveraging dynamics models. In this paper, to
relax the constraints on the dynamics model, we investigate
decision-making in out-of-support regions directly.

In this section, we first give a motivating example to
show our ideal solution to out-of-support region decision-
making (in Section 4.1). Then, we introduce a practical
algorithm of the proposed solution for complex tasks, based
on meta-learning techniques (in Section 4.2 and Section 4.3).

4.1 Decision-Making in Out-of-Support Regions
By rethinking the scheme of offline model-based RL, without
loss of generality, we first formulate the problem as decision-
making with a partially known dynamics model (Pak-DM) in
a surrogate objective. In this problem, we have two dynamics
models: a target dynamics model ρ and a partially known
dynamics model ρ′, where ρ is the deployment environment
in the offline RL setting, and ρ′ is used to approximate ρ.

Due to the bias of data sampling in the offline setting and the
limitation on the capacity of the function approximator, only
in part of state-action space, we have ρ′(s′|s, a) = ρ(s′|s, a),
while the transitions in other parts of space are uncertain.
We call the satisfied space “accessible space” (a.k.a., in-
support regions) and its complement “inaccessible space”
(a.k.a., out-of-support regions). In this problem, we assume
the two subspaces have been predefined in some ways
as in the offline setting (e.g., we can define the space in
which an uncertainty quantification is larger than a threshold
as the inaccessible space) and then discuss the decision-
making problem in this setting. Formally, given an accessible
space Xa and an inaccessible space Xi, the partially known
dynamics model is defined as:

ρ′(s′|s, a) =
{
ρ(s′|s, a) [s, a] ∈ Xa

Unknown [s, a] ∈ Xi
,

where X denotes the state-action concatenated space for
brevity and [s, a] denote a vector concatenating s and a.
Our objective is to find a policy π∗ to maximize Jρ by
only querying the partially known dynamics model ρ′. If
Xi = ∅, that is ρ′(s′|s, a) = ρ(s′|s, a),∀s ∈ S, a ∈ A, the
problem is reduced to a vanilla model-based policy learning
problem with an oracle dynamics model. For simplification,
we assume the oracle reward function r is given, but it can
also be formulated as a partially known reward function in
a similar way. Now we give an example of a Pak-DM in
Figure 2.

A

r(A) = 1

B

α

β

C2

C1

r(C1) = 100

r(C2) = −20

D

Fig. 2: An example of a Pak-DM. Each node denotes a state.
Here we consider an MDP with finite state space, including
A, B, C1, C2 and D. The directed edges denote the transition
process. Here we consider a one-action transition in all states
except for state B. On state B, we have action α and β, which
are denoted as square nodes. By taking α on state B, the state
will change to A. However, the transition after taking β in
B is unknown. We use dashed directed edges to denote the
possible transitions. In our formulation, edges to any node
are valid. But we just consider the edges from B to C1 and
C2 and omit the edges to A, B, and D for better readability.
The reward function r(s) will give a reward when the agent
reaches A, C1 or C2.

In this setting, the model-based policy learning algo-
rithms with constraints ([15, 18]) can be summarized as:
finding the optimal policy without reaching inaccessible
space. It might output a conservative policy since it avoids
making decisions that might lead agents to out-of-support
regions. Taking Figure 2 as an example, the output policy
would be run in the loop of A→ B → α→ A. It will avoid
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taking β on state B. If the real transition is ρ(B, β) = C2,
the policy can avoid the penalty −20 since C2 will not be
reached. On the other hand, while ρ(B, β) = C1, the policy
would miss the large bonus 100 in C1.

To handle the above problem, in this article, we present
a new offline policy learning method that utilizes a probe-
reduce decision-making pipeline to improve policy general-
ization in out-of-support regions using the approximated ρ′,
which includes the following phases:

1) (Training) Construct a dynamics model set {ρ̂i}
via modeling all possible transitions in Xi. (It is
impractical to do that with infinite state space. We
will give a practical solution in Section 4.3);

2) (Training) Learn the optimal policy from each model
ρ̂i to form the optimal policy set {π∗

ρ̂i
};

3) (Deployment) Initialize a state s0 from the deploy-
ment environment ρ;

4) (Deployment) Probe the environment ρ by selecting
an action a such that [s, a] ∈ Xi. After getting the
next state s′ = ρ(s′|s, a), store the tuple (s, a, s′) in a
memory (e.g., a replay buffer) D. If there is no action
a that allows [s, a] ∈ Xi, randomly select a policy
from the policy set to take an action.

5) (Deployment) Reduce the policy set by only keeping
the policies whose corresponding transition model ρ̂i
can explain the experiences in the memory: {ρ̂i} ←
{ρ | ρ(s′|s, a) = s′,∀(s, a, s′) ∈ D,∀ρ ∈ {ρ̂i}} and
{π∗

ρ̂i
} ← {π∗

ρ|ρ ∈ {ρ̂i}};
6) (Deployment) Repeat Step 4 and 5 until the policy

set is reduced to a single policy.

In this pipeline, we solve the decision-making problem in
out-of-support regions by probing the uncertainty part of
the deployment environment and adapting the policy for the
environment. In Figure 2, the ideal MAPLE solution would
construct two dynamics models: ρ̂1 where ρ̂1(B, β) = C1,
and ρ̂2 where ρ̂2(B, β) = C2. Then we learn two optimal
policies {π∗

ρ1
, π∗

ρ2
} for each dynamics model. At deployment,

we first randomly select a policy from the policy set to make
decisions. Upon reaching B for the first time, where the
transition on action β is uncertain, we take action β and get
the next state. If the next state is C1, the policy will reduce to
π∗
ρ̂1

, otherwise to π∗
ρ̂2

. Therefore, if ρ(B, β) = C2, the policy
would initially run A→ B → β → C2 → D → A and then
run in the loop of A→ B → α→ A because the latter yields
higher rewards. If ρ(B, β) = C1, the policy would always
run in the loop of A→ B → β → C1 → D → A.

We then dive into the performance difference between the
two pipelines for decision-making. In particular, we define
a policy πa which is learned by adapting through the above
probing and reducing iterations, and a policy πc which is
learned by constraints: πa firstly probe to visit state-action
pair in inaccessible space based on the policies in the policy
set until the policy set is reduced to a single policy. πc is
a conservative policy that avoids reaching any unknown
regions. We give Theorem 1 to describe the performance gap
Jρ(πa) − Jρ(πc) between πa and πc. The full proof can be
found in Appendix A.
Theorem 1. Given a target dynamics model ρ, a policy πa

learned by adapting, a policy πc learned by constraints,
and the maximum step Nm taken by πa to probe and

reduce the policy set to a single policy, the performance
gap Jρ(πa)− Jρ(πc) between πa and πc satisfies:

Jρ(πa)− Jρ(πc) ≥ ∆c −∆p − γNm+1Jρ∆
(π∗),

where ∆c denotes the performance gap of the optimal
policy π∗ and πc, while ∆p denotes the performance
degradation of MAPLE compared with π∗ because
of the phase of probing. Jρ∆(π

∗) denotes the perfor-
mance degradation of π∗ on the dynamics model ρ
caused by different initial state distribution: Jρ∆(π

∗) =
Edπ⋆

Nm+1(s)
[V ⋆(s)] − Edπa

Nm+1(s)
[V ⋆(s)], where dπ

⋆

Nm+1(s)

and dπa

Nm+1(s) denote the state distribution induced by
π⋆ and πa at the Nm + 1 step and V ∗(s) denotes the
expected long-term rewards of π∗ at state s.

We can see that the performance gain of πa is that it can
automatically converge to the optimal policy after the loop
of probing and reducing (i.e., ∆c), while the cost of πa comes
from additional probing on inaccessible space, including less
reward getting when probing (i.e., ∆p) and a worse initial
state distribution after probing (i.e., Jρ∆

(π∗)).
Based on Theorem 1, we give the principles for choosing

between the pipelines: Firstly, with a larger performance
gap of ∆c, πa can reach a better performance than πc. On
the other hand, the tasks with large penalties on undesired
behavior might make ∆p larger, which reduces the overall
performance of πa. Besides, the tasks where sub-optimal
behaviors easily lead agents to states with low value, e.g.,
unsafe states which are prone to terminate the trajectory,
might make Jρ∆

(π∗) large, which also reduces the overall
performance of πa.

4.2 Efficient Decision-Making in Out-of-Support Re-
gions with Meta-learning Techniques
It is computationally inefficient to learn optimal policies

independently for each dynamics model since the policies’
behaviors would be similar in in-support regions. For better
efficiency, we introduce a context-aware adaptable policy,
inspired by meta-learning techniques, to represent the set
of learned policies. Here, we first introduce a new notation:
the environment-context vector z ∈ Z , where Z denotes
the space of the context vectors. Given a set of dynamics
models T := {ρ̂i}, each ρ̂i can be represented by a vector
z. Formally, there is a mapping ϕ : T → Z . We call ϕ
an environment-context extractor. The context-aware policy
π(a|s, z) takes actions based on the current state s and the
vector of environment-context z of a given environment
z = ϕ(ρ̂), where ρ̂ ∈ T . We define the optimal environment-
context extractor ϕ∗ satisfying

∃πϕ∗ ∈ Π,∀ρ̂ ∈ T , Jρ̂(πϕ∗) = max
π

Jρ̂(π),

where πϕ := π(at|ϕ(zt|ρt), st) is an adaptable policy and
Π denotes the policy class. It means that with the optimal
extractor ϕ∗, we have a unified adaptable policy πϕ∗ , which
can make the optimal decisions in all of the environments in
T based on the z inferred by ϕ∗. We will discuss the input
of ϕ later.

In addition, we define the optimal adaptable policy π∗
ϕ∗

to be one that satisfies ∀ρ̂ ∈ T , Jρ̂(π∗
ϕ∗) = maxπ Jρ̂(π).

With the optimal ϕ∗ and π∗
ϕ∗ , and given any ρ̂ in T , the



5

adaptable policy can make the best decisions with the output
of environment-context z. To achieve this, given a dynamics
model set T , we optimize ϕ and πϕ by the following objective
function:

ϕ∗, π∗
ϕ∗ = argmax

ϕ,πϕ

Eρ∼T [Jρ(πϕ)] , (1)

where∼ denotes a sample strategy to draw dynamics models
ρ̂ from the dynamics model set T s.t. P [ρ̂] > 0,∀ρ̂ ∈ T . We
take a uniform sampling strategy in the following analysis.

To learn the context z by ϕ(z|ρ̂), the main question
is: What are suitable inputs to ϕ for context learning? In
the robotics domain, similar environment contexts have
been proposed recently [30, 41, 32]. The policy incorpo-
rates an online system identification module ϕ(zt|st, τ0:t),
which utilizes the history of past states and actions τ0:t =
[s0, a0, ..., st−1, at−1, st] to predict the parameters of the
dynamics in simulators. For example, τ could be a trajectory
of robot interactions with varying friction coefficients, and z
is the value of the coefficient. In practice, a recurrent neural
network (RNN) is used to embed the sequential information
into environment-context vectors zt = ϕ(st, at−1, zt−1). In
MAPLE, we follow the same structure to model the extractor
but the trajectories are rollout in the constructed dynamics
models. If the reward function is also partially known, rt−1

should be considered, that is zt = ϕ(st, at−1, rt−1, zt−1).
With an RNN-based environment-context extractor ϕ

optimized with Equation (1), the context-aware policy π can
automatically probe environments and reduce the policy
set. Considering a given i-step partial trajectory τ0:i and a
subset of deterministic dynamics models T ′ ⊂ T where
the dynamics model ρ̂ ∈ T ′ is consistent with τ0:i, the
objective from i + 1 to T on given τ0:i can be rewritten as
Eρ̂∼T ′ [Eτ∼p(π,ρ̂)[

∑T
k=i+1 γ

krk]]. Since the dynamics models
in T ′ are indistinguishable at step i+1, the optimal policy at
this step would converge to a stochastic policy if the optimal
actions are different among the dynamics models. If ρ̂ is
sampled uniformly from T ′ and the optimal cumulative
rewards

∑T
k=i+1 γ

kr∗k are the same for each dynamics
model, the optimal policy at i+ 1 is to uniformly-sampled
actions from the optimal actions of each dynamics model.
If the optimal cumulative rewards are different, the action
probabilities are weighted by the cumulative rewards of each
dynamics model. On the other hand, partial trajectories from
different dynamics models might predict the same z. If the
optimal actions in the same state are conflicting, to increase
the performance of objective Equation (1), the policy gradient
has to backpropagate from π to ϕ. If the partial trajectories
τ0:i are different, the contexts in these partial trajectories
would be distinctive. Finally, the output action distribution
of the context-aware policy would be optimized in a subset
of the dynamics models in which the partial trajectories τ0:i
are consistent.

4.3 Practical Implementation of Offline Model-based
Adaptable Policy Learning
From the decision-making problem with Pak-DM to the real
offline setting, the additional thing we should consider is the
recognition of the inaccessible space and the construction of
the dynamics model set. Especially in tasks with infinite state-
action space, it is impractical to find the exact inaccessible

space and recover all possible transitions in it. As a practical
implementation, we use the ensemble technique to learn the
dynamics model set, which would predict similar transitions
in the accessible space and tend to predict different tran-
sitions in inaccessible space. With large ensemble models
with different initialized weights, we can construct a large
number of transition cases in the inaccessible space. If the
real transition pattern falls into the variant of the ensemble
dynamics model set, relying on the interpolation ability of
the environment-context extractor ϕ, the adaptable policy
π can take appropriate actions. However, only relying on

Algorithm 1 Offline model-based adaptable policy learning

Input: ϕφ as an environment-context extractor,
parameterized by φ; Adaptable policy network πθ

parameterized by θ; Offline dataset Doff; Trajectory
termination rule f ; Rollout horizon H ;
Process:

Generate an ensemble of m dynamics models {ρ̂i} via
supervised learning
Initialize an empty buffer Drollout; Add hidden states z to
each tuple in Drollout and initialize with 0
for 1, 2, 3, ... do

Randomly select the dynamics model ρ̂i in {ρ̂i} and
sample s1, a0, z0 from Doff

for t=1, 2 , ..., H do
Sample zt from ϕφ(z|st, at−1, zt−1) and then sam-

ple at from πθ(a|st, zt)
Rollout one step st+1 ∼ ρ̂i(s|st, at) and rt+1 =

r(st, at)
Compute the terminal state dt+1 = f(st+1)
Compute the reward penalty: rt+1 ← rt+1 −

λU(st, at)
Add (st+1, rt+1, dt+1, st, at, zt) to Drollout
Break the rollout if dt+1 is True

end for
Update the stored hidden states z in Doff with ϕφ

Use SAC [42] to update φ and θ via Equation (1) with
Drollout and Doff
end for

the randomness of the initialization, to cover real cases in
all out-of-support region need sufficiently enough dynamics
model set, which would be highly expensive. In order to
trade off the cost of model construction and better adaptivity,
in the practical implementation, we use several tricks to
constrain the policy exploration in the ensemble dynamics
model set: 1) We add some mild constraints to the exploration
region. To mitigate the compounding error of the model, we
constrain the maximum rollout length to a fixed number.
Besides, at each step, a penalty is calculated according to the
model uncertainty U(st, at), which measures the prediction
uncertainty of the learned transition models at (st, at). As a
result, a reward provided to agents consists of two parts: a
reward given by a reward function and a penalty calculated
by U(st, at). The constraints are the same as MOPO [15], but
the coefficients are more relaxed; 2) As we increase the rollout
length, the large compounding error might lead the agent
to reach entirely unreal regions in which the states would
never appear in the deployment environment. These samples
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are useless for adaptable policy learning and might make
the training process unstable. Given a task, we can construct
some simple rules to discriminate the entirely unreal regions
and terminate the trajectory rollout (i.e., set the “done” flag
to True) when reaching these regions. In our implementation,
we terminate trajectories when the predicted next states are
out of range of (−smin, smax), where smin and smax are two
hyper-parameters to define a reasonable range of state space.

Based on the above techniques, we propose the practical
implementation of offline model-based adaptable policy
learning in Algorithm 1. More details can be found in the
Appendix B.

5 A TOY-ENVIRONMENT VERIFICATION

In this work, we give a probe-reduce pipeline for decision-
making in out-of-support regions. In Section 4.2, we use
an environment-context extractor and an adaptable policy
to build the practical algorithm. We claim that with the
RNN-based environment-context extractor ϕ optimized with
Equation (1), the context-aware policy π can automatically
probe environments and reduce the policy set. In this section,
we design a toy environment, Treasure Explorer, to verify
the argument. Figure 3 illustrates the Treasure-Explorer
environment. Treasure Explorer follows the problem of
decision-making with a partially known dynamics model
(Pak-DM) in a surrogate objective. We learn an adaptable
policy and a conservative policy in the environment and
show the decision process of the adaptable policy matching
the claims in the previous sections.

5.1 Verification Setup

In this environment, we only have a partially known dynam-
ics model as illustrated in Figure 3 and would like to maxi-
mize the reward in a deployed environment. The deployed
environment could be one of the three dynamics models:
ghost, nothing or treasure, as illustrated in Figure 4(c). In the
task, the agent is initialized at the lower-left room. By taking
one of the available actions, the agent will move to the room
pointed by the arrow. After moving into different rooms, the
agent will hit the object in the room and get a reward, then
get back to the lower-left room immediately. We set r = 1
when hitting the apple, r = 10 by hitting the treasure, and
r = −1 by hitting the ghost. The agent can make decisions 5
times. That is, the horizon of a trajectory is set to 5.

We give the optimal policy and the ideal probe-reduce
policy:

• Optimal policy: The optimal policy depends on the
object in the inaccessible space. If the object in the
inaccessible space gives -10 (ghost) or 0 (nothing)
reward, the optimal policy is going right every time. If
the object provided 10 reward (treasure), the optimal
policy is going up forever.

• Probe-reduce policy: Ideally, a probe-reduce policy
will first probe the inaccessible space: it will choose to
go up and observe the object in the upper-left room.
Based on the object obtained in the upper-left room,
the possible dynamics model set will be reduced to
one of the three models. Subsequently, it will choose

the optimal policy to control the robot according to
the confirmed dynamics model.

In Section 4.2, we propose to learn an adaptable policy
based on meta-learning techniques to archive the efficient
probe-reduce decision-making. In this section, we give the
simplest implementation: We randomly select dynamics
models from the dynamic model set (shown in Figure 4)
with the same probability for each time, construct the
environment-context extractor with a GRU-based recurrent
neural network [43] and the adaptable policy with a multi-
layer perceptron (MLP) and adopt PPO [44] to optimize the
policy and the extractor. Besides, we also give the simplest
implementation of conservative policy learning: we learn
an MLP policy in the environment but with large penalties
when the agent reaches an inaccessible space. The policy is
also optimized with PPO.

5.2 Results
Figure 5 shows the learning curve of each method. There
are two dash lines indicating the theoretical performance of
the optimal policy and the probe-reduce policy. We can see
that the performance of the adaptable policy can converge
to the theoretical performance of the probe-reduce policy.
In terms of the performance in the dynamics model set,
the results demonstrate that the learned adaptable policy is
consistent with the probe-reduce policy. The performance
gap of the conservative policy and the adaptation ability in
the training environments depend on the sampling strategy
of the adaptable policy learning. With a larger probability
of training with the treasure dynamics model, the return of
adaptable policy would be larger.

In order to investigate the behavior patterns of the policies
in different deployed environments, we record the up-to-now
cumulative rewards at each step in a single trajectory. In
particular, for the i-step, the up-to-now cumulative rewards
is
∑i

k=0 rk. The result is presented in Figure 6.
As can be seen in Figure 6, since the adaptable policy

tries to probe the environment at the first step, the first-step
reward is varied to the environments. After that, the RNN
recognizes the environment, and the agent adjusts its policy
to the optimal policy for the environment. As can be seen
in Figure 6, after the first step, the slope of the up-to-now
cumulative rewards of the adaptable policy are the same
to the optimal policy. In contrast, the conservative agent
always chooses to exploit the room with 1-reward. Besides,
the cumulative rewards curve of the probe-reduce policy is
the same as the adaptable policy.

We also present the trajectory sampled by the optimal pol-
icy, conservative policy, and adaptable policy in Appendix D.
We can find the trajectories match the behaviors of the probe-
reduce policy: probing first and then exploiting accordingly.

This result supports the claim in Section 4.2, the adaptable
policies indeed possess such a probing-reduce characteristic.
Without such adaptability, the agent is prone to stick at a
local minimum solution and produces a conservative policy.

The results are also consistent with the Theorem 1. As can
be found in the case of “Ghost”, tasks with large penalties on
undesirable behavior might make ∆p larger, which reduces
the overall performance of the adaptable policy. In this
case, the performance of the adaptable policy is significantly



7

Available Action

Inaccessible Space

Reward = 1

Agent

Reward = -10

Reward = 10

Fig. 3: Illustration of the Treasure-Explorer task. In this task, the policy needs to control an agent to move in the map. There
are three reachable rooms in the environment (i.e., the lower-left room, the lower-right room, and the upper-left room). In
each room, the agent can choose one of the available actions in the room (marked as the yellow arrows). By taking one of the
available actions, the agent will move to the room pointed by the arrow. After moving into different rooms, the agent will
hit the object in the room and get a reward, then get back to the lower-left room immediately. This is an environment with
uncertainty. In the upper-left room, the object in the inaccessible space is unknown. That is, we do not know the next state
by taking the “up” action in the lower-left room. The inaccessible space here is simplified by omitting the possibility of
reaching the other two rooms to simplify the analysis.

(a) Treasure (b) Nothing (c) Ghost

Fig. 4: All possible dynamics models in the Treasure-Explorer task.
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Fig. 5: The learning curves of the adaptable policy and
conservative policy.

worse than the conservative policy. On the other hand, as
in the case of “Treasure”, the adaptable policy can reach a
better performance than the conservative policy, with a larger
performance gap of ∆c.

6 EXPERIMENTS

We evaluate MAPLE on multiple offline MuJoCo tasks [19].
All the details of MAPLE’s training and evaluation are given
in Appendix C and Appendix E. We release our code at
Github *.

6.1 Comparative Evaluation
6.1.1 In D4RL Benchmark Tasks
We test MAPLE in standard offline RL tasks with D4RL
datasets [45]. The version of the offline datasets we used
is “v0”. The ensemble dynamics model set is trained via
supervised learning. We repeat each task with three random
seeds. In the model learning stage, we train 20 models for
each task and select 14 of them as the ensemble model for
policy learning. The horizon H is set to 10 in these tasks. The
policy is trained for 1000 iterations in the policy learning
stage.

We compare MAPLE with: (1) MOPO: Learn an ensemble
model via supervised learning and learn a policy in the
ensemble models with uncertainty penalty [15]; (2) MOPO-
loose: MOPO algorithm with the same hyperparameter as
MAPLE for constraints, which is looser than MOPO; (3)

*. https://github.com/xionghuichen/MAPLE

https://github.com/xionghuichen/MAPLE
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Fig. 6: The up-to-now cumulative rewards at each step for adaptable, conservative, probe-reduce, and optimal policies.

TABLE 1: Results on D4RL benchmark [45]. Each number is the normalized score proposed by Fu et al. [45] of the policy at
the last iteration of training, ± standard deviation. Among the offline RL methods, we bold the highest mean for each task.

Environment Dataset MAPLE MOPO MOPO-loose SAC BEAR BC BRAC-v CQL

Walker2d random 21.7 ± 0.3 13.6 ± 2.6 8.0 ± 5.4 4.1 6.7 9.8 0.5 7.0
Walker2d medium 56.3 ± 10.6 11.8 ± 19.3 32.6 ± 18.0 0.9 33.2 6.6 81.3 79.2
Walker2d mixed 76.7 ± 3.8 39.0 ± 9.6 35.7 ± 2.2 3.5 25.3 11.3 0.4 26.7
Walker2d med-expert 73.8 ± 8.0 44.6 ± 12.9 66.7 ± 14.8 -0.1 26.0 6.4 66.6 111.0
HalfCheetah random 38.4 ± 1.3 35.4 ± 1.5 35.4 ± 2.1 30.5 25.5 2.1 28.1 35.4
HalfCheetah medium 50.4 ± 1.9 42.3 ± 1.6 44.0 ± 1.6 -4.3 38.6 36.1 45.5 44.4
HalfCheetah mixed 59.0 ± 0.6 53.1 ± 2.0 36.9 ± 15.0 -2.4 36.2 38.4 45.9 46.2
HalfCheetah med-expert 63.5 ± 6.5 63.3 ± 38.0 15.0 ± 6.0 1.8 51.7 35.8 45.3 62.4
Hopper random 10.6 ± 0.1 11.7 ± 0.4 10.6 ± 0.6 11.3 9.5 1.6 12.0 10.8
Hopper medium 21.1 ± 1.2 28.0 ± 12.4 16.9 ± 2.4 0.8 47.6 29.0 32.3 58.0
Hopper mixed 87.5 ± 10.8 67.5 ± 24.7 83.1 ± 6.5 1.9 10.8 11.8 0.9 48.6
Hopper med-expert 42.5 ± 4.1 23.7 ± 6.0 25.1 ± 1.8 1.6 4.0 111.9 0.8 98.7

BEAR: Learn a policy via off-policy RL while constraining
the maximum mean discrepancy of the current policy to the
behavior policy [14]; (4) BC: Imitate the behavior policy
via supervised learning; (5) SAC: Perform typical SAC
updates with the static dataset [42]; (6) BRAC-v: A behavior-
regularized actor-critic proposed by Wu et al. [24]; (7) CQL:
Learn an action-value function with regularization to obtain
a conservative policy [46]. Results of (3-7) and (1) are taken
from the work of [45] and [15].

Table 1 has shown the performance of 12 tasks. In sum-
mary, the performance of MAPLE on 7 tasks is better than
other SOTA algorithms. Besides, MAPLE reaches the best
performance among the SOTA model-based conservative
policy learning algorithms in 10 out of the 12 tasks. These
results demonstrate the superior generalization ability of
MAPLE.

However, in Hopper experiments, model-free methods
BC, CQL, and BRAC-v often reach better performance. We
consider that it is because the environment is unstable, more
diverse collected data is needed for robust dynamics model
learning. Even in MAPLE, a finite number of ensemble
dynamics models might not cover the real case so that to
make a robust adaptation. Therefore, only in the “Hopper-
mixed” task, which has diverse collected data, MOPO and
MAPLE can improve the deployment performance.

We also conduct MOPO-loose for each task, which shares
the same hyper-parameters with MAPLE, including the
ensemble model size, rollout length, and penalty coefficient.
The results show that for some cases (e.g., Walker2d-med-
expert and Hopper-mixed), MOPO-loose can also enhance
the performance. We consider the improvement coming from
the constraints in original implementations to be too tight.

However, in most of the tasks, the improvement is not as
significant as MAPLE. This phenomenon indicates that the
improvement of MAPLE does not come from parameter
tuning but our self-adaptation mechanism.

6.1.2 In NeoRL Benchmark Tasks
We also evaluate MAPLE in a recently proposed benchmark,
NeoRL, a near real-world benchmark for offline reinforce-
ment learning [47]. In particular, we select three MuJoCo
tasks: HalfCheetah, Hopper and Walker2d which use the low
and medium qualities of behavior policies for 1000-trajectory
offline dataset collection to test the performance of MAPLE.
In all of the dataset, we use m = 50. In HalfCheetah, we
select λ = 1.0 and H = 15; In Walker2d, we select λ = 0.25
and H = 15; and in Hopper, we select λ = 1.0 and H = 10.
The results are listed in Tab. 2. As can be seen in Tab. 2, 5
of the 6 tasks, MAPLE reaches the best performance among
the offline model-based algorithms, while 2 of the 6 tasks,
MAPLE reaches the best performance among the offline
algorithms.

6.2 Hyper-parameters Analysis
We test the performance of MAPLE with different rollout
length H , dynamics model size m, and penalty coefficient
λ. We search over H ∈ {5, 10, 40}, m ∈ {7, 20, 50} and λ ∈
{1.0, 0.25, 0.05} in the task Walker-medium, Halfcheetah-
mixed, and Hopper-medium-expert. For each setting, we
run with three random seeds. We summarize the results in
Table 8 and Figure 8. The learning curves of each setting can
be found in Figure 16, Figure 17 and Figure 18.

First, as claimed in this work, tight constraints indeed
lead to conservative policies, but the threshold starting to
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TABLE 2: Results on NeoRL benchmark [47]. Each number is the raw score proposed by Qin et al. [47] of the policy at the
1000 iteration of training. We use ± to denote the standard deviation. Among all offline RL methods, we bold the highest
mean for each task. Among the model-based offline RL methods (i.e., BREMEN, MOPO, and MAPLE), we mark the highest
score with“*” for each task.

Environment Dataset MAPLE MOPO BC BCQ PLAS CQL CRR BREMEN

Walker2d low 1741.7 ± 221.5* 599.4 ± 725.3 1466.5 ± 99.8 1953.6 ± 231.6 2166.8 ± 531.1 2298.8 ± 139.1 1753.1 ± 90.4 1667.9 ± 449.1
Walker2d medium 2095.9 ± 533.9* 2051.9 ± 104.6 2503.3 ± 97.9 3173.7 ± 27.8 1778.7 ± 679.5 2947.7 ± 49.7 2300.4 ± 354.3 1927.8 ± 852.2
HalfCheetah low 3900.0 ± 20.8 4741.1 ± 117.2* 3363.8 ± 27.0 3993.0 ± 49.9 3548.5 ± 3.8 4512.4 ± 65.5 3372.6 ± 24.4 4681.1 ± 230.9
HalfCheetah medium 8445.0 ± 69.8* 7534.7 ± 134.7 5866.8 ± 73.6 6062.8 ± 12.1 6092.3 ± 47.9 6576.2 ± 39.1 5137.8 ± 328.7 6666.9 ± 382.6
Hopper low 752.4 ± 39.8* 209.9 ± 101.1 502.6 ± 23.1 601.1 ± 6.3 638.9 ± 52.3 530.7 ± 4.0 557.1 ± 20.6 708.8 ± 250.7
Hopper medium 917.6 ± 59.5* 39.0 ± 48.8 1692.0 ± 894.1 1573.6 ± 364.4 2018.2 ± 848.8 2124.8 ± 231.8 1576.2 ± 346.2 816.5 ± 181.7
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Fig. 7: Illustration of hyper-parameters analysis on m. In the first row, we compare the normalized return of the best setting
and the loosest setting. The x-axis is the model size m. For each m, the legend “best” is the setting that has the largest
performance, among which model size is m. The legend “loosest” is the setting that λ = 0.05 and H = 40. In the second
row, we compare the best constraint setting for each model size m. For each m, the legend “lambda*” is the setting that λ
value of the best-performance setting among which model size is m. Similarly, the legend “H*” is the setting that H value of
the best-performance setting among which model size is m.

suppress the asymptotic performance of policies is varied to
the tasks. As can be seen in Figure 8(d), in the tasks of walker-
medium, λ = 1.0 is the setting significantly suppressing the
asymptotic performance, while in hopper-medium-expert
task, as can be seen in Figure 8(f), λ = 1.0 is a good setting for
policy learning. In hopper-medium-expert and halfcheetah-
mixed tasks, H = 5 is the setting significantly suppressing
the asymptotic performance (see Figure 8(c) and Figure 8(b)),
while H = 5 and H = 10 are both good settings in walker-
medium task (see Figure 8(b) and Figure 8(a)).

Second, as we do not construct all possible transitions in
out-of-support regions, too loose constraints also hurt the
asymptotic performance. In the task of walker2d-medium,
H = 40 makes the asymptotic performance much worse than
other settings. In the task of hopper-medium-expert, λ = 0.05

and H = 40 also degenerate the asymptotic performance.
However, in the task of halfcheetah-mixed, the performance
can always be improved by relaxing the constraints. The
reason is probably that the environment of halfcheetah is
more stable than other tasks. In the halfcheetah environment,
trajectories will not pre-terminate no matter how badly the
agent behaves. Therefore, the environment is tolerable to
some incorrect actions. While in the rest tasks, the agent
might reach unsafe states after performing some undesired
actions. The incorrect actions might come from the probing
process of MAPLE and errors of inference of the environment-
context for some time-steps. Since the environment is toler-
able to some incorrect actions, the probing processing and
the generalization error of the environment-context extractor
have less impact on the deployment performance.



10

0 200 400 600 800 1000
epochs

0.1

0.2

0.3

0.4

0.5
no

rm
al

ize
d 

re
tu

rn

walker2d_medium test on H

H=10
H=40
H=5
MOPO

(a)

0 200 400 600 800 1000
epochs

0.1

0.2

0.3

0.4

0.5

0.6

no
rm

al
ize

d 
re

tu
rn

halfcheetah_mixed test on H

H=10
H=40
H=5
MOPO

(b)

0 200 400 600 800 1000
epochs

0.1

0.2

0.3

0.4

0.5

no
rm

al
ize

d 
re

tu
rn

hopper_medium_expert test on H

H=10
H=40
H=5
MOPO

(c)

0 200 400 600 800 1000
epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

no
rm

al
ize

d 
re

tu
rn

walker2d_medium test on lambda
lambda=0.05
lambda=0.25
lambda=1.0
MOPO

(d)

0 200 400 600 800 1000
epochs

0.1

0.2

0.3

0.4

0.5

0.6
no

rm
al

ize
d 

re
tu

rn

halfcheetah_mixed test on lambda

lambda=0.05
lambda=0.25
lambda=1.0
MOPO

(e)

0 200 400 600 800 1000
epochs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

no
rm

al
ize

d 
re

tu
rn

hopper_medium_expert test on lambda

lambda=0.05
lambda=0.25
lambda=1.0
MOPO

(f)

Fig. 8: Illustration of hyper-parameters analysis. In Figure 8(a), Figure 8(b) and Figure 8(c), we group the results by H . For
each group, there have nine different experiments. Similarly, in Figure 8(d), Figure 8(e) and Figure 8(f), we group the results
by m.

Third, for any type of constraint, increasing the size of
the dynamics model set can improve the performance of
MAPLE. Besides, as increasing enough size of the dynamics
model set, the setting with loose constraints can reach better
performance. The illustration can be found in Figure 7. As
can be seen in Figure 7(a), Figure 7(b) and Figure 7(c), as m
increased, the best-setting performances are significantly im-
proved. Besides, as can be seen in Figure 7(e) and Figure 7(b),
in the task of halfcheetah-mixed, when m increased, the best-
setting is relaxed (i.e., λ∗ is reduced and H∗ is longer) and the
performance of the loosest setting is close to the best setting
gradually. However, in the task of hopper-medium-expert
and walker-medium, the performances of the loosest settings
are significantly worse than the best setting. The constraints
of H∗ and λ∗ in the best setting keep the same from m = 7
to m = 50. We think the reason is that the size of dynamics
models is not so large enough to cover the real cases in the
out-of-support regions within the explorable boundary. Thus,
the extractor ϕ can not infer a correct environment-context
when deployed.

6.3 The Ability of Decision-Making in Out-of-Support
Regions

The ultimate target of MAPLE is handling the decision-
making challenge in out-of-support regions. By constructing
all possible transitions in out-of-support regions, the probing-
reducing loop can find the optimal policy finally. However, it

is impractical to construct a dynamics model set that covers
all possible transitions in out-of-support regions. In practice,
we construct an ensemble dynamics model set and use loose
constraints on policy sampling to expand the exploration
boundary for better asymptotic performance. Therefore, we
state that, with a large size of the model set, the dynamics
models can cover more real transitions in out-of-support
regions, then MAPLE is expected to make correct decisions
in wider out-of-support regions. In the following, we verify
the claim through three aspects:

• In Sec. 6.3.1, we select three tasks to show the effect
of the scale of the dynamics model set to the out-of-
support regions decision-making ability of MAPLE;

• In Sec. 6.3.2, we construct an extremely large dynam-
ics model sets for each of the 9 tasks for MAPLE
training to verify the statement further;

• As MAPLE trains the policy to adapt to any possible
dynamics models in out-of-support regions, it has
the potential to adapt to the environments that differ
from where the offline data is gathered. In Sec. 6.3.3,
we demonstrate the ability of MAPLE by deploying it
in changed environments.

6.3.1 MAPLE for Long-Horizon Decision-Making
In this section, to verify the above statement, we first analyze
the relationship among the rollout horizon H , the size of
ensemble models m, and the asymptotic performance, where
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Fig. 9: Illustration of hyper-parameters analysis on m. In the first row, we compare the normalized return of the best
setting and the loosest setting. The x-axis is the model size m. For each m, the legend “best” is the setting that has the
largest performance, among which model size is m. The legend “loosest” is the setting that H = 40. In the second row, we
compare the best constraint setting for each model size m. For each m, the legend “H*” is the setting that H value of the
best-performance setting among which model size is m.

the rollout length represents the region of decision-making. If
a policy trained with a longer H has better asymptotic
performance, it has a better ability for decision-making in
wider out-of-support regions. The asymptotic performance is
evaluated by the cumulative rewards at the 1000-th iteration.
We select λ = 0.25 for Walker2d-medium and λ = 1.0 for
Hopper-medium-expert, and compare the performance of
different H and m. We search over H ∈ {10, 20, 40} and
m ∈ {7, 50, 100, 200} for conducting the experiments. The
results can be found in Figure 20 in Appendix.

We merge that results and give an summary of the
relation about asymptotic performance on different H and
m in Figure 9 (inherited parts of the results in Sec. 6.2). In
Figure 9, we can see that, by increasing m, the best setting is
relaxed (i.e., H∗ is longer) and the performance of the loosest
setting is close to the best setting gradually. In particular, in
Walker2d-medium, when m = 200, from H = 10 to H = 40,
the normalized returns are all around 0.8, which also shows
the robustness of MAPLE to different constraints with large
model size. In Hopper-medium-expert, although there is
still a gap between the performance of the best setting and
the loosest setting, the performance of the loosest setting is
gradually increased as m increased and the H∗ is relaxed
from 10 to 20.

On the other hand, we found that, without enough
ensemble models, too loose constraints will result in worse
performance. Taking walker2d as an example (see Table 3),
for the setting of m = 50, when H = 10, the final normalized
return is about 0.65. However, as H increases, the asymptotic
performance drops gradually. When H = 40, the asymptotic
performance is even worse than MOPO.

TABLE 3: Results of MAPLE in the Walker2d-medium task
among different rollout lengths H and size of the ensemble
model set m.

H=10 H = 20 H = 40

m = 50 65.59 ± 5.64 41.22 ± 10.23 6.17 ± 0.37
m = 200 79.54 ± 0.25 80.23 ± 0.21 83.46 ± 0.16

We further verify the surmise through Figure 10. As can
be seen in Figure 10, the trained one-step reward is similar
among different horizons. It means that the performance of

policies in dynamics models is similar. The worse perfor-
mance indicates that the adaptable policy overfits the finite
dynamics models and ϕ fails to infer a correct environment-
context to the adaptable policy when deployed. The issue
can be remedied by constructing more dynamics models.
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Fig. 10: A Comparison of trained and deployed rewards at
the 1000-th epoch in the Walker2d-medium task based on
m = 50 and among different H .

6.3.2 Long-Horizon Decision-Making of MAPLE with a Large
Dynamics Model Set
Based on the above analysis, we can get an empirical
conclusion that increasing the model size is significantly helpful
to find a better and robust adaptable policy via expanding the
exploration boundary. Therefore, we conduct another variant of
the MAPLE algorithm, MAPLE-200, which uses 200 ensemble
dynamics models for policy learning and expands the rollout
horizon to 20.

The results of MAPLE-200 can be found in Table 4. We
can see that the empirical conclusions not only suit the
Walker2d-medium but also other tasks. In all of the tasks,
MAPLE-200 reaches at least similar performance to MAPLE.
In the tasks like Walker2d-med-expert, HalfCheetah-mixed,
Hopper-medium, and Hopper-med-expert, the performance
improvement of MAPLE-200 is significant. Besides, in the
tasks of Hopper-medium and Hopper-med-expert, where
MAPLE and MOPO fail to reach a comparable performance
to model-free offline methods, MAPLE-200 can reach similar
or much better results.
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TABLE 4: Results on MuJoCo tasks with MAPLE-200. We
overwrite the name of previous MAPLE algorithm with
“MAPLE-20” for better clarity.

Environment Dataset MAPLE-200 MAPLE-20

Walker2d random 22.1 ± 0.1 21.7 ± 0.3
Walker2d medium 81.3 ± 0.1 56.3 ± 10.6
Walker2d mixed 75.4 ± 0.9 76.7 ± 3.8
Walker2d med-expert 107.0 ± 0.8 73.8 ± 8.0
HalfCheetah random 41.5 ± 3.6 38.4 ± 1.3
HalfCheetah medium 48.5 ± 1.4 50.4 ± 1.9
HalfCheetah mixed 69.5 ± 0.2 59.0 ± 0.6
HalfCheetah med-expert 55.4 ± 3.2 63.5 ± 6.5
Hopper random 10.7 ± 0.2 10.6 ± 0.1
Hopper medium 44.1 ± 2.6 21.1 ± 1.2
Hopper mixed 85.0 ± 1.0 87.5 ± 10.8
Hopper med-expert 95.3 ± 7.3 42.5 ± 4.1

MAPLE-200 demonstrates a powerful adaptation ability.
However, we point out that, by increasing the 10x size of
ensemble dynamics models, the time overhead for MAPLE-
200 training is also larger. For example, by using NVIDIA
Tesla P40 and Xeon(R) E5-2630 to train the algorithms, the
time overhead of MAPLE-200 is 10 times longer than MAPLE.
Besides, to obtain dynamics models that covered more real
cases in out-of-support regions than MAPLE-200, the size of
ensemble models becomes much larger, which is one of the
limitations for current MAPLE implementation.

6.3.3 Decision-Making Ability in Changed Environments
As MAPLE trains the policy to adapt to any possible dynam-
ics models in out-of-support regions, it has the potential to
adapt to the environments that differ from where the offline
data is gathered (we name it original environment). To verify
this claim, we construct various environments by changing
the dynamics parameters of the original environments.
Specifically, we increase/reduce density, gravity, and
friction by 50% in Walker2d, HalfCheetah, and Hopper,
respectively. Then, we use the D4RL dataset [45] to train
policies by several model-free and model-based offline RL
methods. Finally, we evaluate the performance of the learned
policies in the constructed environments.

The mean returns over at least three random seeds for
each method are listed in Table 5. We can find that MAPLE-
200 obtains the best returns in 4 out of 6 tasks and reaches the
best averaged score, which implies the strong adaptability of
MAPLE-200. We also find MAPLE-200 is inferior to MAPLE
when reduce gravity by 50% in HalfCheetah-medium. We
believe it is because of the hyper-parameters, which remain
the same for all tasks and have not been fine-tuned for each
task particularly. Moreover, the improvement of MAPLE-200
over MAPLE also shows the benefits of a large model set,
which improves the adaptability a lot. The results in Table 5
strongly support the motivation of MAPLE, i.e. learning a
adaptable policy that can adapt to all possible dynamics in
out-of-support regions. Although MAPLE-200 only obtains
the data in the original environments, its adaptability enables
itself to survive in the environment that is different from the
original environments.

6.4 MAPLE with other Meta-RL methods
In MAPLE, meta RL is adopted to solve the model-based
offline RL problem. In the current implementation, the

online system identification (OSI) method in meta RL
is employed [30, 41, 32]. In fact, other techniques, e.g.,
VariBAD [48], can also be integrated into MAPLE. We
also implemented VariBAD in MAPLE. We name the new
combined method VariBAD-MAPLE. In VariBAD-MAPLE,
we implement MAPLE with additional auxiliary tasks of
the state and reward reconstruction and KL divergence
minimization between the inferred z and a prior Gaussian
distribution N (0, 1). All of the other techniques including
the truncated horizon and reward penalty in MAPLE are also
used in VariBAD-MAPLE. The comparison result is presented
in Table 6. We name the MAPLE method instantiated with
OSI-MAPLE to distinguish it from VariBAD-MAPLE.

As can be seen in VariBAD, just applying a meta-RL
algorithm does not work well in the model-based offline
RL domain compared with MAPLE. However, compared
with the vanilla SAC algorithm, VariBAD can reach similar
or better performance in most of the tasks. In the task
of HalfCheetah-random, VariBAD can be even better than
MOPO. However, by both considering the issues caused by
the approximated dynamics models and the strategy of ex-
ploiting new samples obtained during deployment, VariBAD-
MAPLE can also reach a significantly better performance than
MOPO. Compared with the original implementation of OSI-
MAPLE, VariBAD-MAPLE can do better than OSI-MAPLE in
Walker2d-medium and HalfCheetah-random but worse than
OSI-MAPLE in Walker2d-mixed and HalfCheetah-mixed.

The results again demonstrate the effectiveness of the
pipeline of MAPLE. The results also inspire us that paying
attention to the connection between the meta-RL techniques
in sim2real and model-based offline-RL domains is valuable
for model-based offline RL to develop more robust policy
learning algorithms.

6.5 Visualization of the Hidden State
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Fig. 11: Hidden state visualization in 10 learned dynamics
models.

We conduct additional experiments in Walker2d-mixed
and HalfCheetah-mixed to visualize the hidden state, z. We
first randomly select 10, 000 states from the offline dataset
and rollout the adaptable policy for 10 steps with each of the
dynamics models in the ensemble model set. We record the
absolute value of the context-variable yi =

|z|i
|Dim(Z)| for each

step i, where |Dim(Z)| denotes the number of dimensions
of the embedding state. We present the results on 10 of the
ensemble model in Figure 11. We found that yi in different
dynamics models are almost the same at the first step and
become separable after 4− 5 steps. This result reveals that
different dynamics models are distinguished by z. Besides, y
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TABLE 5: Test results in changed environments. The policies learned by each method are evaluated in the dynamics different
from where the offline data is gathered. The evaluation dynamics are constructed by changing the environment parameters,
i.e., density, gravity, and friction. We bold the highest return for each task. We overwrite the name of previous MAPLE
algorithm with “MAPLE-20” for clarity. We also implement “MOPO-200” which is a MOPO algorithm with 200 ensemble
dynamics models. We overwrite the name of “MOPO” with “MOPO-20” for clarity.

Task Env. change MAPLE-200 MAPLE-20 MOPO-200 MOPO-20 CQL

Walker2d-medium density × 50 % 78.5 5.5 0.0 49.4 10.8
Walker2d-medium density× 150 % 83.2 5.6 0.0 9.4 16.2
HalfCheetah-medium gravity × 50 % 30.0 36.0 39.5 44.0 21.3
HalfCheetah-medium gravity × 150 % 41.2 32.2 38.8 33.6 31.7
Hopper-medium friction × 50 % 33.0 12.0 12.2 15.6 1.2
Hopper-medium friction × 150 % 21.1 13.2 21.4 12.6 1.4

Averaged score / 47.8 17.4 18.6 27.4 13.7

TABLE 6: Comparisons on different variants of MAPLE in D4RL benchmark [45].

Environment Dataset OSI-MAPLE VariBAD-MAPLE VariBAD SAC MOPO

Walker2d random 21.7 ± 0.3 21.8 ± 0.2 4.47 ±1.9 4.1 13.6 ±2.6
Walker2d medium 56.3 ± 10.6 81.1 ± 1.2 4.5 ±0.6 0.9 11.8 ±19.3
Walker2d mixed 76.7 ± 3.8 54.2 ± 8.7 10.8 ±2.4 3.5 39.0 ±9.6
Walker2d med-expert 73.8 ± 8.0 70.0 ± 16.2 -0.1 ±0.0 -0.1 44.6 ±12.9
HalfCheetah random 38.4 ± 1.3 41.2 ±1.1 37.8 ±0.2 30.5 35.4 ±1.5
HalfCheetah medium 50.4 ± 1.9 50.4 ±3.4 22.4 ±3.7 -4.3 42.3 ±1.6
HalfCheetah mixed 59.0 ± 0.6 56.7 ±0.5 42.2 ±5.7 -2.4 53.1 ±2.0
HalfCheetah med-expert 63.5 ± 6.5 64.9 ±6.4 -0.2 ±0.5 1.8 63.3 ±38.0

are approximately divided into several groups. Hence, the
context z is informative and has discovered the environment-
specific information.
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Fig. 12: Hidden state visualization in deployment environ-
ments. At time step 200, 400, and 600, the hidden state of
the RNN is diturbed.

We also sample trajectories for 1000 time-step in the
deployment environment. We found that the curves of y
oscillate within a region. In HalfCheetah-mixed, the range
is around [0.6, 0.8]. In Walker2d-mixed, the range is around
[0.3, 0.5]. The z in the deployment environment are not con-
stant, conversely, they are continuously changing. The chang-
ing range is approximately in the range of the converged
value in the learned dynamics models. This result implies
that the deployment environment could be a combination of
the learned dynamics, and thus the context variables in the
deployment environment could be all possible values that
have appeared in the learned dynamics.

Finally, to further study the behavior of Φ in the de-
ployment environment, we try to sample trajectories in the
deployment environment and disturb the hidden state of the
RNN at time step 200, 400, and 600. The context variables are
robust to the disturbance. When the disturbance is injected,
yi will converge back to the region before the disturbance

within 10 time steps. Thus, we also believe the predicted
contexts are stable and robust.

7 DISCUSSION AND FUTURE WORK

Prior work has demonstrated the feasibility of model-based
policy learning in the offline setting by using the conservative
policy learning paradigm [15, 18]. It is an important break-
through from zero to one in the offline setting, but it is far
from the end of offline model-based policy learning. In this
work, we investigate the decision-making problems in out-
of-support regions directly. We first formulate the problem as
decision-making in Pak-DM and propose MAPLE, a learn-to-
adapt paradigm to solve the problem. We also give a theorem
to describe the pros and cons of the paradigms to give us
principles for the paradigm selection. We verified MAPLE
in the MuJoCo tasks, and get our empirical conclusion: by
increasing the size of the model set, we can expand the
exploration boundary in the approximated dynamics models
by using adaptable policy to make better and robust decisions
in deployment environments.

MAPLE gives another direction to handle the offline
model-based learning problem: Besides constraining on
sampling and training dynamics models with better gen-
eralization, we can model out-of-distribution regions by
constructing all possible transition patterns. The current
limitation lies in the implementation: (1) The extractor’s
generalization ability depends on the neural network itself,
which is uncontrollable to some degree. Adding some
auxiliary tasks might handle this issue; (2) Ensemble is the
direct way to cover real transitions in out-of-support regions.
However, as the size of the model set becomes large, it is
hard to generate new different dynamics models to cover
the real cases only by increasing the size of the model. More
efficient ways to increase the cover real transitions of the
dynamics model set should be further explored.
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APPENDIX A
PROOF

Theorem 2. Given a target dynamics model ρ, a policy πa

learned by adapting, a policy πc learned by constraints,
and the maximum step Nm taken by πa to probe and
reduce the policy set to a single policy, the performance
gap between πa and πc satisfies:

Jρ(πa)− Jρ(πc) ≥ ∆c −∆p − γNm+1Jρ∆
(π∗),

where ∆c denotes the performance gap of the optimal
policy π∗ and πc, while ∆p denotes the performance
degradation of MAPLE compared with π∗ because
of the phase of probing. Jρ∆

(π∗) denotes the perfor-
mance degradation of π∗ on the dynamics model ρ
caused by different initial state distribution: Jρ∆

(π∗) =
Edπ⋆

Nm+1(s)
[V ⋆(s)] − Edπa

Nm+1(s)
[V ⋆(s)], where dπ

⋆

Nm+1(s)

and dπa

Nm+1(s) denote the state distribution induced by
π⋆ and πa at the Nm + 1 step and V ∗(s) denotes the
expected long-term rewards of π∗ at state s.

Proof A.1. MAPLE algorithm includes two policies: a probing
policies πp to visit state-action pair in inaccessible space,
and the reduced policy πt, which is equal to the optimal
π∗ in theory. Given a trajectory, the cumulative reward is:

N∑
k=0

γkrpk +
T∑

k=N+1

γkr∗k,

where N denotes the time-step for the probing policy πp

to reduce the policy set to the reduced policy πt, which
is equal to π∗. rp and r∗ denote the rewards run by πp

and πt respectively. Regarding the policy of MAPLE as a
mixed policy πa, the performance can be written as:

J(πa) = Eτ∼p(τ |πa,ρ)

N(τ)∑
k=0

γkrpk +
T∑

k=N(τ)+1

γkr∗k

 ,

where N(τ) denotes a function that outputs the time-step
needed for the probing policy πp to reduce the policy set
for each trajectory τ . Assuming the maximized time-step
needed is Nm, that is Nm := maxτ N(τ), we have:

J(πa) ≥Eτ∼p(τ |πa,ρ)

Nm∑
k=0

γkrpk +
T∑

k=Nm+1

γkr∗k


=

∫
ρ0(s)Es0=s,τ∼p(τ |πp,ρ)

[
Nm∑
k=0

γkrpk

]
ds

+ γNm+1

∫
ρp(s)EsNm+1=s,τ∼p(τ |π∗,ρ)

[
T−Nm−1∑

k=0

γkr∗k+Nm+1

]
ds

=Jpar
ρ (ρ0, π

p, Nm) + γNm+1Jpar
ρ (ρp, π

∗, T −Nm − 1),

where ρ0(s) denotes the initial state distribution of the
environments, and ρp(s) denotes the state distribution
at time-step Nm running with πp. Here we introduce
a new notation Jpar

ρ (ρ0, π, T ) to describe the partial
performance of policy π in dynamics model ρ, running

with the initial state distribution ρ0 and the horizon T .
Then we know the performance gap between π∗ and πa:

J(π∗)− J(πa) ≤Jpar
ρ (ρ0, π

∗, Nm)− Jpar
ρ (ρ0, π

p, Nm)

+ γNm+1Jpar
ρ (ρ∗ − ρp, π

∗, T −Nm − 1),

where ρ∗(s) denote the state distribution at time-step
Nm running with π∗. Assuming the performance gap
between π∗ and πc is :

J(π∗)− J(πc) = ∆c,

we have:

J(πa)− J(πc) ≥∆c −
(
Jpar
ρ (ρ0, π

∗, Nm)− Jpar
ρ (ρ0, π

p, Nm)
)

− γNm+1Jpar
ρ (ρ∗ − ρp, π

p, T −Nm − 1).

Jpar
ρ (ρ∗ − ρp, π

∗, T −Nm − 1) is the performance degra-
dation of π∗ on the dynamics model ρ caused by different
initial state distributions. In the infinite horizon setting,
given an initial state s,

∑T−Nm−1
k=0 γkr∗k+Nm+1 = V ∗(s),

where V ∗(s) denotes the expected long-term rewards of
π∗ taking state s as the initial state. Letting dπ

⋆

Nm+1(s) and
dπa

Nm+1(s) denote the state distribution induced by π⋆

and πa at the Nm + 1 step, we have:

Jpar
ρ (ρ∗ − ρp, π

∗, T −Nm − 1)

= Edπ⋆
Nm+1(s)

[V ⋆(s)]− Edπa
Nm+1(s)

[V ⋆(s)].

Letting ∆p := Jpar
ρ (ρ0, π

∗, Nm) − Jpar
ρ (ρ0, π

p, Nm),
which is the performance degradation of MAPLE com-
pared with π∗ in the phase of probing in inaccessible
space, and Jρ∆

(π∗) := Jpar
ρ (ρ∆, π

∗, T −Nm − 1), which
is the performance of π∗ on the dynamics model ρ
with an occupancy measure gap of the state distribution
ρ∆ = ρ∗ − ρp at time-step Nm, we get our conclusion:

Jρ(πa)− Jρ(πc) ≥ ∆c −∆p − γNm+1Jρ∆
(π∗).
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APPENDIX B
MAPLE IN IMPLEMENTATION

B.1 Network Structure

The network structure of MAPLE is shown in Figure 13. In
the implementation, we use two independent neural network
parameters for the Q-value function and policy. In Figure 13,
we use the superscript of v and π for the parameters φ and
ϕ to denote the independent neural network parameters
for the Q-value function and policy. In MAPLE, there
is a skip-connection for the environment-aware layer to
reuse the original input features. The environment-context
extractor layers are both modeled with a single-layer GRU
cell [49]. Here we use hv

t and hπ
t to denote the output of the

two environment-context extractors. After the environment-
context extractor layers, we use another fully-connected
embedding layer f to reduce the output of the hidden context.
Empirically, the output of the fully-connected embedding
z should not be much larger than the dimension of xt.
Too large of z might lead to unstable policy and Q-value
training. The embedding layer and environment-aware layer
are modeled with Multilayer Perceptron (MLP). Table 7
reports the detailed parameters of the neural network. The
hyper-parameters have not been fine-tuned, other structures
can be tried: e.g., we found that the performance would be
better if increasing the fully-connected embedding layers to
128 at least in HalfCheetah tasks.

B.2 Implementation Details

B.2.1 Reward penalty with uncertainty quantification

We use reward penalty and trajectory truncation as in
MOPO [15], but the coefficients are more relaxed (i.e.,
smaller reward penalty coefficient and longer rollout length).
We model the dynamics models with Gaussian distribu-
tion. For each time-step t, the reward penalty U(st, at) =
maxi ||Σi(st, at)||2, where Σi(st, at) denotes the standard
deviation of the predicted Gaussian distribution of the i-th
dynamics model at state st and action at, and || · ||2 denotes
the l2-norm.

B.2.2 State/penalty Clipping

As we increase the rollout length, the large compounding
error might lead the agent to reach entirely unreal regions
in which the states would never appear in the deployment
environment. These samples are useless for adaptable policy
learning and might make the training process unstable. Thus,
we constrain the range of state to [-100, 100], and we also
truncate trajectories when the predicted next states are out of
range of [-100, 100]. For the same reason, the reward penalty
is clipped to [0, 40].

B.2.3 Hidden State of RNN

As seen in Algorithm 1, when sampling initial states for the
model-policy interaction, the hidden states are also sampled.
The policy will also start inferring action starting from the
hidden state. Thus, we should update the hidden states of
the offline dataset Doff periodically. In our implementation,
for every four epoch, we infer the hidden states of policy
and value function for the dataset.

B.3 Hyper-Parameters
Other hyper-parameters include: rollout length H , dynamics
model size m, and penalty coefficient λ. For all of the tasks,
we use H = 10, m = 20 and penalty coefficient λ = 0.25
except λ = 5.0 in HalfCheetah-med-expert and λ = 1.0 and
H = 5 in Hopper-mixed. The other hyper-parameters are
the same as the original MOPO.

APPENDIX C
DETAILED EXPERIMENTAL SETTING IN MUJOCO
TASKS

We test the algorithms in standard offline RL tasks with D4RL
datasets [45]. In particular, we use data from 3 environments:
Hopper, HalfCheetah, and Walker2d. In each environment,
we test MAPLE with 4 four kinds of datasets: random,
medium, mixed, and medium expert (med-expert). The
datasets are gathered through different strategies: random
and medium are collected by a random and medium policy,
while med-expert is the concatenation of medium and the
data collected by an expert policy. Mixed uses the replay
buffer of a policy trained up to the performance of the
medium agent. We repeat each task with three random seeds.
In the model learning stage, we train 20 models for each
task and select 14 of them as the ensemble model for policy
learning. The ensemble dynamics model set is trained via
supervised learning. The policy is trained for 1000 iterations.

APPENDIX D
EXTRA EXPERIMENTAL RESULTS IN THE TREASURE-
EXPLORER TASK

In the Treasure-Explorer task, we present the trajectory
sampled by the optimal policy, conservative policy, and
adaptable policy in Figure 15. In the Nothing and the Ghost
environments, the adaptable policy takes an active probing
behavior at the first step. Then, it repeats the optimal policy
for the rest steps. However, the conservative policy keeps a
single behavior pattern: always picks the apple in the room
on the right side. The trajectories match the behaviors of
the probe-reduce policy: probing first and then exploiting
accordingly.

APPENDIX E
EXTRA EXPERIMENTAL RESULTS IN MUJOCO
TASKS

E.1 Learning Curves of MAPLE and MOPO-loose
The learning curves of MAPLE and MOPO-loose in 12 tasks
can be found in Figure 14. MOPO-loose shares the same
hyper-parameters with MAPLE, including the ensemble
model size, the weights of parameters of each dynamics
model, rollout length, and penalty coefficient. The results
show that for some cases (e.g., Walker2d-med-expert and
Hopper-mixed), MOPO-loose can also enhance the perfor-
mance. We consider the improvement coming from the
constraints in original implementations being too tight.
However, in most of the tasks, the improvement is not as
significant as MAPLE. This phenomenon indicates that the
improvement of MAPLE does not come from parameter
tuning but our self-adaptation mechanism.
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State: 𝑠!Action: 𝑎!"#

Concatenated vector: 𝑥! = 𝑎!"# , 𝑠!

Environment-aware policy layer:
𝑎! ∼ 𝜋$! 𝑥! , 𝑧!%

Action: 𝑎!

Environment-aware value layer:
𝑞! = 𝑄$" 𝑥! , 𝑧!& , 𝑎!

Value environment-context extractor:
ℎ!& = 𝜙'" ℎ!"#& , 𝑥!

Value: 𝑞!

: Learnable layer : Parameter-free layer : Input : Output

Fully-connected embedding:
𝑧!& = 𝑓'" ℎ!&

Policy environment-context extractor:
ℎ!% = 𝜙'! ℎ!"#% , 𝑥!

Fully-connected embedding:
𝑧!% = 𝑓'! ℎ!%

Fig. 13: Illustration of the network structure for MAPLE.

TABLE 7: The hyper-parameters of MAPLE for the neural network.

Hyperparameter Value

Activation function of hidden layers relu
Activation function of policy output tanh
Activation function of q-value output linear
Fully-connected embedding layers f [16]
Unit of the environment-context extractor ϕ 128
Environment-aware layers of Q and π [256, 256]

E.2 Learning Curves of MAPLE-200
Based on the above analysis, we can get an empirical
conclusion that increasing the model size is significantly
helpful to find a better and robust adaptable policy via
expanding the exploration boundary. Therefore, we conduct
another variant of the MAPLE algorithm, MAPLE-200, which
uses 200 ensemble dynamics models for policy learning and
expands the rollout horizon to 20. We select λ = 0.25 for
tasks in HalfCheetah and Walker2d, and λ = 1.0 for Hopper.
we still select λ = 5.0 and H = 10 in the task of HalfCheetah-
med-expert, and we select λ = 0.25 and H = 10 in the task
Hopper-mixed as before. We test MAPLE-200 in all of the
tasks. The results can be found in Figure 19. The results of
hyper-parameters analysis with a larger size of dynamics
models is in Figure 20.
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Fig. 14: The learning curves of MAPLE, MOPO, and MOPO-loose in mujoco tasks. The solid curves are the mean reward
and the shadow is the standard error of three seeds.
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(a) Treasure (b) Nothing (c) Ghost

Fig. 15: Trajectories of the conservative, adaptable, and optimal policies in each environment. The first row is the conservative
policy; the second is the optimal policy; the third is the adaptable policy. In the Nothing and the Ghost environments, a
yellow line indicates the probing behavior. The agent will execute the probing behavior for one time, and then continuously
perform the red line behavior. In the Treasure environment, the probing behavior is the same as the optimal behavior.
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TABLE 8: Results on D4RL benchmarks. Each number is the normalized score proposed by Fu et al. [45] of the policy at the
last iteration of training, ± standard deviation. We group the experiments by the type of task and the value of m and bold
the top-3 scores for each group.

setting performance

m H λ walker-medium halfcheetah-mixed hopper-medium-expert

7

5
1.0 31.86 ± 20.22 59.69 ± 1.55 22.89 ± 0.06
0.25 55.81 ± 8.73 57.75 ± 1.59 25.58 ± 2.12
0.05 31.97 ± 7.61 58.51 ± 1.48 24.97 ± 5.25

10
1.0 8.69 ± 0.26 62.19 ± 0.24 45.01 ± 5.18
0.25 37.70 ± 16.82 58.84 ± 2.05 43.59 ± 13.20
0.05 41.50 ± 13.13 61.83 ± 1.58 27.02 ± 0.75

40
1.0 7.80 ± 0.44 60.80 ± 0.73 38.11 ± 1.94
0.25 6.11 ± 0.39 61.59 ± 1.56 26.95 ± 0.80
0.05 4.23 ± 1.80 62.00 ± 1.55 29.33 ± 0.19

20

5
1.0 5.37 ± 2.23 58.10 ± 1.06 24.92 ± 1.22
0.25 78.14 ± 1.12 59.06 ± 0.53 24.99 ± 0.80
0.05 76.26 ± 0.97 59.45 ± 0.56 24.82 ± 1.30

10
1.0 33.37 ± 16.61 60.86 ± 0.65 49.89 ± 3.83
0.25 56.30 ± 10.60 59.04 ± 0.60 41.93 ± 4.93
0.05 14.91 ± 7.06 63.18 ± 1.85 43.51 ± 5.86

40
1.0 30.50 ± 15.56 62.05 ± 0.17 33.98 ± 0.10
0.25 22.53 ± 8.35 68.39 ± 0.27 36.48 ± 2.09
0.05 5.36 ± 1.33 67.72 ± 0.36 34.59 ± 0.31

50

5
1.0 12.98 ± 1.29 58.01 ± 0.16 28.15 ± 2.29
0.25 82.61 ± 1.38 59.24 ± 0.92 26.23 ± 0.16
0.05 54.70 ± 16.65 60.79 ± 1.20 23.45 ± 0.63

10
1.0 41.20 ± 18.24 61.94 ± 0.27 55.21 ± 8.42
0.25 79.35 ± 0.64 59.14 ± 0.89 46.52 ± 6.89
0.05 53.79 ± 8.42 63.88 ± 1.39 34.88 ± 3.59

40
1.0 8.60 ± 0.03 61.27 ± 1.38 38.55 ± 0.45
0.25 6.17 ± 0.37 67.66 ± 0.66 30.39 ± 0.16
0.05 6.52 ± 0.09 69.00 ± 0.21 33.83 ± 2.91

MOPO 17.8± 19.3 53.1± 2.0 23.7 ± 6.0
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Fig. 16: Illustration of hyper-parameter analysis on Halfcheetah-mixed. The solid curves are the mean reward and the
shadow is the standard error of three seeds.
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Fig. 17: Illustration of hyper-parameter analysis on Walker2d-medium. The solid curves are the mean reward and the
shadow is the standard error of three seeds.
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Fig. 18: Illustration of hyper-parameter analysis on Hopper-medium-expert. The solid curves are the mean reward and the
shadow is the standard error of three seeds.
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Fig. 19: Learning curves of MAPLE-200, MAPLE and MOPO in mujoco tasks. The solid curves are the mean reward and the
shadow is the standard error of three seeds.
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(a) Walker2d (H=10)
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(b) Walker2d (H=20)
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(c) Walker2d (H=40)
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(d) Hopper (H=10)
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(e) Hopper (H=20)
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Fig. 20: The learning curves of MAPLE with different hyper-parameters m and H . The solid curves are the mean of
normalized return and the shadow is the standard error.
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